
POD Translation
by pod2pdf
ajf@afco.demon.co.uk

Html2Wml

Title Page Html2Wml

26 October 2003 Fly leaf

Table of Contents
Html2Wml

NAME 1
SYNOPSIS 1
DESCRIPTION 1
OPTIONS 1

Conversion Options 1
-a, —ascii 1
—[no]collapse 1
—ignore-images 1
—[no]img-alt-text 1
—[no]linearize 2
-n, —numeric-non-ascii 2
-p, —nopre 2

Links Reconstruction Options 2
—hreftmpl=TEMPLATE 2
—srctmpl=TEMPLATE 2

Splitting Options 2
-s, —max-card-size=SIZE 2
-t, —card-split-threshold=SIZE 2
—next-card-label=STRING 2
—prev-card-label=STRING 2

HTTP Authentication 2
-U, —http-user=USERNAME 2
-P, —http-passwd=PASSWORD 3

Proxy Support 3
-[no]Y, —[no]proxy 3

Output Options 3
-k, —compile 3
-o, —output 3

Debugging Options 3
-d, —debug[=LEVEL] 3
—xmlcheck 3

DECK SLICING 3
Slice by cards or by decks 3
Note on size calculation 4
Why compiling the WML deck? 4

ACTIONS 4
Syntax 4
Available actions 5

include 5
Description 5
Parameters 5
fsize 5
Description 5
Parameters 5
Notes 5
skip 5
Description 5

Generic parameters 5
for=output format 5

Examples 5
LINKS RECONSTRUCTION 5

Templates 6

26 October 2003 i

Html2Wml Table of Contents

HREF Template 6
Image Source Template 6

Syntax 6
Available parameters 6

URL 6
FILENAME 6
FILEPATH 6
FILETYPE 6

Examples 6
PROXY SUPPORT 7
CAVEATS 7
LINKS 7

Download 7
Html2Wml 7
Nutialand 7

Resources 7
The WAP Forum 7
WAP.com 7
The World Wide Web Consortium 7
TuxMobil 7

Programmers utilities 8
HTML Tidy 8
Kannel 8
WML Tools 8

WML browsers and Wap emulators 8
Opera 8
wApua 8
Tofoa 8
EzWAP 8
Deck-It 8
Klondike WAP Browser 8
WinWAP 8
WAPman 8
Wireless Companion 9
Mobilizer 9
QWmlBrowser 9
Wapsody 9
WAPreview 9
PicoWap 9

ACKNOWLEDGEMENTS 9
AUTHOR 9
COPYRIGHT 9

ii 26 October 2003

pod2pdf Html2Wml

NAME
Html2Wml — Program that can convert HTML pages to WML pages

SYNOPSIS
Html2Wml can be used as either a shell command:
 $ html2wml file.html

or as a CGI:
 /cgi-bin/html2wml.cgi?url=/index.html

In both cases, the file can be either a local file or a URL.

DESCRIPTION
Html2Wml converts HTML pages to WML decks, suitable for being viewed on a Wap device. The
program can be launched from a shell to statically convert a set of pages, or as a CGI to convert a
particular (potentially dynamic) HTML resource.
Althought the result is not guarantied to be valid WML, it should be the case for most pages. Good
HTML pages will most probably produce valid WML decks. To check and correct your pages, you can
use W3C‘s softwares: the HTML Validator, available online at http://validator.w3.org and HTML Tidy,
written by Dave Raggett.
Html2Wml provides the following features:

 translation of the links

 limitation of the cards size by splitting the result into several cards

 inclusion of files (similar to the SSI)

 compilation of the result (using the WML Tools, see "LINKS")

 a debug mode to check the result using validation functions

OPTIONS
Please note that most of these options are also available when calling Html2Wml as a CGI. In this case,
boolean options are given the value "1" or "0", and other options simply receive the value they expect.
For example, —ascii becomes ?ascii=1 or ?a=1. See the file t/form.html for an example on how
to call Html2Wml as a CGI.

Conversion Options
-a, —ascii

When this option is on, named HTML entities and non-ASCII characters are converted to
US-ASCII characters using the same 7 bit approximations as Lynx. For example, © is
translated to "(c)", and ß is translated to "ss". This option is off by default.

—[no]collapse
This option tells Html2Wml to collapse redundant whitespaces, tabulations, carriage returns, lines
feeds and empty paragraphs. The aim is to reduce the size of the WML document as much as
possible. Collapsing empty paragraphs is necessary for two reasons. First, this avoids empty
screens (and on a device with only 4 lines of display, an empty screen can be quite ennoying).
Second, Html2wml creates many empty paragraphs when converting, because of the way the
syntax reconstructor is programmed. Deleting these empty paragraphs is necessary like cleaning
the kitchen :-)
If this really bother you, you can desactivate this behaviour with the —nocollapse option.

—ignore-images
This option tells Html2Wml to completly ignore all image links.

—[no]img-alt-text

26 October 2003 1

Html2Wml pod2pdf

This option tells Html2Wml to replace the image tags with their corresponding alternative text (as
with a text mode web browser). This option is on by default.

—[no]linearize
This option is on by default. This makes Html2Wml flattens the HTML tables (they are
linearized), as Lynx does. I think this is better than trying to use the native WML tables. First, they
have extremely limited features and possibilities compared to HTML tables. In particular, they
can‘t be nested. In fact this is normal because Wap devices are not supposed to have a big CPU
running at some zillions-hertz, and the calculations needed to render the tables are the most
complicated and CPU-hogger part of HTML.
Second, as they can‘t be nested, and as typical HTML pages heavily use imbricated tables to
create their layout, it‘s impossible to decide which one could be kept. So the best thing is to keep
none of them.
[Note] Although you can desactivate this behaviour, and although there is internal support for
tables, the unlinearized mode has not been heavily tested with nested tables, and it may produce
unexpected results.

-n, —numeric-non-ascii
This option tells Html2wml to convert all non-ASCII characters to numeric entities, i.e., "é"
becomes é, and "sz" becomes ß. By default, this option is off.

-p, —nopre
This options tells Html2Wml not to use the <pre> tag. This option was added because the compiler
from WML Tools 0.0.4 doesn‘t support this tag.

Links Reconstruction Options
—hreftmpl=TEMPLATE

This options sets the template that will be used to reconstruct the href-type links. See "LINKS
RECONSTRUCTION" for more information.

—srctmpl=TEMPLATE
This option sets the template that will be used to reconstruct the src-type links. See "LINKS
RECONSTRUCTION" for more information.

Splitting Options
-s, —max-card-size=SIZE

This option allows you to limit the size (in bytes) of the generated cards. Default is 1,500 bytes,
which should be small enought to be loaded on most Wap devices. See "DECK SLICING" for
more information.

-t, —card-split-threshold=SIZE
This option sets the threshold of the split event, which can occur when the size of the current card
is between max-card-size - card-split-threshold and max-card-size. Default
value is 50. See "DECK SLICING" for more information.

—next-card-label=STRING
This options sets the label of the link that points to the next card. Default is "[>>]", which
whill be rendered as "[]".

—prev-card-label=STRING
This options sets the label of the link that points to the previous card. Default is "[<<]",
which whill be rendered as "[<<]".

HTTP Authentication
-U, —http-user=USERNAME

2 26 October 2003

pod2pdf Html2Wml

Use this option to set the username for an authenticated request.

-P, —http-passwd=PASSWORD
Use this option to set the password for an authenticated request.

Proxy Support
-[no]Y, —[no]proxy

Use this option to activate proxy support. By default, proxy support is activated. See "PROXY
SUPPORT".

Output Options
-k, —compile

Setting this option tells Html2Wml to use the compiler from WML Tools to compile the WML
deck. If you want to create a real Wap site, you should seriously use this option in order to reduce
the size of the WML decks. Remember that Wap devices have very little amount of memory. If
this is not enought, use the splitting options.
Take a look in wml_compilation/ for more information on how to use a WML compiler with
Html2Wml.

-o, —output
Use this option (in shell mode) to specify an output file. By default, Html2Wml prints the result to
standard output.

Debugging Options
-d, —debug[=LEVEL]

This option activates the debug mode. This prints the output result with line numbering and with
the result of the XML check. If the WML compiler was called, the result is also printed in
hexadecimal an ascii forms. When called as a CGI, all of this is printed as HTML, so that can use
any web browser for that purpose.

—xmlcheck
When this option is on, it send the WML output to XML::Parser to check its well-formedness.

DECK SLICING
The deck slicing is a feature that Html2Wml provides in order to match the low memory capabilities of
most Wap devices. Many can‘t handle cards larger than 2,000 bytes, therefore the cards must be
sufficiently small to be viewed by all Wap devices. To achieve this, you should compile your WML
deck, which reduce the size of the deck by 50%, but even then your cards may be too big. This is where
Html2Wml comes with the deck slicing feature. This allows you to limit the size of the cards, currently
only before the compilation stage.

Slice by cards or by decks
On some Wap phones, slicing the deck is not sufficient: the WML browser still tries to download the
whole deck instead of just picking one card at a time. A solution is to slice the WML document by
decks. See the figure below.
 _____________ _____________
 | deck | | deck #1 | | | | |
 | _________ | | _________ |
 | | card #1 | | | | card | |
 | |_________| | | |_________| |
 | _________ | |_____________|
 | | card #2 | |
 | |_________| | . . .
 | _________ |
 | | ... | | _____________
 | |_________| | | deck #n |
 | _________ | | _________ |

26 October 2003 3

Html2Wml pod2pdf

 | | card #n | | | | card | |
 | |_________| | | |_________| |
 |_____________| |_____________|

 WML document WML document
 sliced by cards sliced by decks

What this means is that Html2Wml generates several WML documents. In CGI mode, only the
appropriate deck is sent, selected by the id given in parameter. If no id was given, the first deck is sent.

Note on size calculation
Currently, Html2Wml estimates the size of the card on the fly, by summing the length of the strings that
compose the WML output, texts and tags. I say "estimates" and not "calculates" because computing the
exact size would require many more calculations than the way it is done now. One may objects that
there are only additions, which is correct, but knowing the exact size is not necessary. Indeed, if you
compile the WML, most of the strings of the tags will be removed, but not all.
For example, take an image tag: .
When compiled, the string "img" will be replaced by a one byte value. Same thing for the strings
"src" and "alt", and the spaces, double quotes and equal signs will be stripped. Only the text
between double quote will be preserved... but not in every cases. Indeed, in order to go a step further,
the compiler can also encode parts of the arguments as binary. For example, the string
"http://www." can be encoded as a single byte (8F in this case). Or, if the attribute is href, the
string href="http:// can become the byte 4B.
As you see, it doesn‘t matter to know exactly the size of the textual form of the WML, as it will always
be far superior to the size of the compiled form. That‘s why I don‘t count all the characters that may be
actually written.
Also, it‘s because I‘m quite lazy ;-)

Why compiling the WML deck?
If you intent to create real WML pages, you should really consider to always compile them. If you‘re
not convinced, here is an illustration.
Take the following WML code snipet:
 Yahoo!

It‘s the basic and classical way to code an hyperlink. It takes 42 bytes to code this, because it is
presented in a human-readable form.
The WAP Forum has defined a compact binary representation of WML in its specification, which is
called "compiled WML". It‘s a binary format, therefore you, a mere human, can‘t read that, but your
computer can. And it‘s much faster for it to read a binary format than to read a textual format.
The previous example would be, once compiled (and printed here as hexadecimal):
 1C 4A 8F 03 y a h o o 00 85 01 03 Y a h o o ! 00 01

This only takes 21 bytes. Half the size of the human-readable form. For a Wap device, this means both
less to download, and easier things to read. Therefore the processing of the document can be achieved in
 a short time compared to the tectual version of the same document.
There is a last argument, and not the less important: many Wap devices only read binary WML.

ACTIONS
Actions are a feature similar to (but with far less functionalities!) the SSI (Server Side Includes)
available on good servers like Apache. In order not to interfere with the real SSI, but to keep the syntax
easy to learn, it differs in very few points.

Syntax
Basically, the syntax to execute an action is:
 <!-- [action param1="value" param2=’value’] -->

4 26 October 2003

pod2pdf Html2Wml

Note that the angle brackets are part of the syntax. Except for that point, Actions syntax is very similar to
SSI syntax.

Available actions
Only few actions are currently available, but more can be implemented on request.

include
Description

Includes a file in the document at the current point. Please note that Html2Wml
doesn‘t check nor parse the file, and if the file cannot be found, will silently die (this
is the same behavior as SSI).

Parameters
virtual=url — The file is get by http.
file=path — The file is read from the local disk.

fsize
Description

Returns the size of a file at the current point of the document.

Parameters
virtual=url — The file is get by http.
file=path — The file is read from the local disk.

Notes
If you use the file parameter, an absolute path is recommend.

skip
Description

Skips everything until the first end_skip action.

Generic parameters
The following parameters can be used for any action.

for=output format
This paramater restricts the action for the given output format. Currently, the only available
format is "wml" (when using html2chtml the format is "chtml").

Examples
If you want to share a navigation bar between several WML pages, you can include it this way:
 <!-- [include virtual="nav.wml"] -->

Of course, you have to write this navigation bar first :-)
If you want to use your current HTML pages for creating your WML pages, but that they contains
complex tables, or unecessary navigation tables, etc, you can simply skip the complex parts and keep
the rest.
 <body>
 <!--[skip for="wml"]-->
 unecessary parts for the WML pages
 <!--[end_skip]-->
 useful parts for the WML pages
 </body>

LINKS RECONSTRUCTION
The links reconstruction engine is IMHO the most important part of Html2Wml, because it‘s this engine
that allows you to reconstruct the links of the HTML document being converted. It has two modes,
depending upon whether Html2Wml was launched from the shell or as a CGI.
When used as a CGI, this engine will reconstructs the links of the HTML document so that all the urls
will be passed to Html2Wml in order to convert the pointed files (pages or images). This is completly

26 October 2003 5

Html2Wml pod2pdf

automatic and can‘t be customized for now (but I don‘t think it would be really useful).
When used from the shell, this engine reconstructs the links with the given templates. Note that absolute
URLs will be left untouched. The templates can be customized using the following syntax.

Templates
HREF Template

This template controls the reconstruction of the href attribute of the A tag. Its value can be
changed using the —hreftmpl option. Default value is
"{FILEPATH}{FILENAME}{$FILETYPE =~ s/s?html?/wml/o; $FILETYPE}".

Image Source Template
This template controls the reconstruction of the src attribute of the IMG tag. Its value can be
changed using the —srctmpl option. Default value is
"{FILEPATH}{FILENAME}{$FILETYPE =~ s/gif|png|jpe?g/wbmp/o;
$FILETYPE}"

Syntax
The template is a string that contains the new URL. More precisely, it‘s a Text::Template template.
Parameters can be interpolated as a constant or as a variable. The template is embraced between curcly
bracets, and can contain any valid Perl code.
The simplest form of a template is {PARAM} which just returns the value of PARAM. If you want to do
something more complex, you can use the corresponding variable; for example {"foo $PARAM
bar"}, or {join "_", split " ", PARAM}.
You may read Text::Template for more information on what is possible within a template.
If the original URL contained a query part or a fragment part, then they will be appended to the result of
the template.

Available parameters
URL

This parameter contains the original URL from the href or src attribute.

FILENAME
This parameter contains the base name of the file.

FILEPATH
This parameter contains the leading path of the file.

FILETYPE
This parameter contains the suffix of the file.

This can be resumed this way:
 URL = http://www.server.net/path/to/my/page.html
 ------------^^^^ ----
 | | \
 | | \
 FILEPATH FILENAME FILETYPE

Note that FILETYPE contains all the extensions of the file, so if its name is index.html.fr for example,
FILETYPE contains ".html.fr".

Examples
To add a path option:
 {URL}$wap

Using Apache, you can then add a Rewrite directive so that URL ending with $wap will be redirected
to Html2Wml:
 RewriteRule ^(/.*)\wap /cgi-bin/html2wml.cgi?url=$1

To change the extension of an image:

6 26 October 2003

pod2pdf Html2Wml

 {FILEPATH}{FILENAME}.wbmp

PROXY SUPPORT
Html2Wml uses LWP built-in proxy support. It is activated by default, and loads the proxy settings
from the environment variables, using the same variables as many others programs. Each protocol (http,
ftp, etc) can be mapped to use a proxy server by setting a variable of the form PROTOCOL_proxy.
Example: use http_proxy to define the proxy for http access, ftp_proxy for ftp access. In the
shell, this is only a matter of defining the variable.
For Bourne shell:
 $ export http_proxy="http://proxy.domain.com:8080/"

For C-shell:
 % setenv http_proxy "http://proxy.domain.com:8080/"

Under Apache, you can add this directive to your configuration file:
 SetEnv http_proxy "http://proxy.domain.com:8080"

but this has the default that another CGI, or another program, can use this to access external ressources.
A better way is to edit Html2Wml and fill the option proxy-server with the appropriate value.

CAVEATS
Html2Wml tries to make correct WML documents, but the well-formedness and the validity of the
document are not guarantied.
Inverted tags (like "bold <i>italic</i>") may produce unexpected results. But only bad
softwares do bad stuff like this.

LINKS

Download
Html2Wml

This is the web site of the Html2Wml project, hosted by SourceForge.net. All the stable releases
can be downloaded from this site.
[http://www.html2wml.org/]

Nutialand
This is the web site of the author, where you can find the archives of all the releases of
Html2Wml.
[http://www.maddingue.org/softwares/]

Resources
The WAP Forum

This is the official site of the WAP Forum. You can find some technical information, as the
specifications of all the technologies associated with the WAP.
[http://www.wapforum.org/]

WAP.com
This site has some useful information and links. In particular, it has a quite well done FAQ.
[http://www.wap.com/]

The World Wide Web Consortium
Altough not directly related to the Wap stuff, you may find useful to read the specifications of the
XML (WML is an XML application), and the specifications of the different stylesheet languages
(CSS and XSL), which include support for low-resolution devices.
[http://www.w3.org/]

TuxMobil
This web site is dedicated to Mobile UniX systems. It leads you to a lot of useful hands-on
information about installing and running Linux and BSD on laptops, PDAs and other mobile

26 October 2003 7

Html2Wml pod2pdf

computer devices.
[http://www.tuxmobil.org/]

Programmers utilities
HTML Tidy

This is a very handful utility which corrects your HTML files so that they conform to W3C
standards.
[http://www.w3.org/People/Raggett/tidy]

Kannel
Kannel is an open source Wap and SMS gateway. A WML compiler is included in the
distribution.
[http://www.kannel.org/]

WML Tools
This is a collection of utilities for WML programmers. This include a compiler, a decompiler, a
viewer and a WBMP converter.
[http://pwot.co.uk/wml/]

WML browsers and Wap emulators
Opera

Opera is originaly a Web browser, but the version 5 has a good support for XML and WML.
Opera is available for free for several systems.
[http://www.opera.com/]

wApua
wApua is an open source WML browser written in Perl/Tk. It‘s easy to intall and to use. Its
support for WML is incomplete, but sufficient for testing purpose.
[http://fsinfo.cs.uni-sb.de/~abe/wApua/]

Tofoa
Tofoa is an open source Wap emulator written in Python. Its installation is quite difficult, and its
incomplete WML support makes it produce strange results, even with valid WML documents.
[http://tofoa.free-system.com/]

EzWAP
EzWAP, from EZOS, is a commercial WML browser freely available for Windows 9x, NT, 2000
and CE. Compared to others Windows WML browsers, it requires very few resources, and is quite
stable. Its support for the WML specs seems quite complete. A very good software.
[http://www.ezos.com/]

Deck-It
Deck-It is a commercial Wap phone emulator, available for Windows and Linux/Intel only. It‘s a
very good piece of software which really show how WML pages are rendered on a Wap phone,
but one of its major default is that it cannot read local files.
[http://www.pyweb.com/tools/]

Klondike WAP Browser
Klondike WAP Browser is a commercial WAP browser available for Windows and PocketPC.
[http://www.apachesoftware.com/]

WinWAP
WinWAP is a commercial Wap browser, freely available for Windows.
[http://www.winwap.org/]

WAPman

8 26 October 2003

pod2pdf Html2Wml

WAPman from EdgeMatrix, is a commercial WAP browser available for Windows and PalmOS.
[http://www.edgematrix.com/edge/control/MainContentBean?page=downloads]

Wireless Companion
Wireless Companion, from YourWap.com, is a WAP emulator available for Windows.
[http://www.yourwap.com/]

Mobilizer
Mobilizer is a Wap emulator available for Windows and Unix.
[http://mobilizer.sourceforge.net/]

QWmlBrowser
QWmlBrowser (formerly known as WML BRowser) is an open source WML browser, written
using the Qt toolkit.
[http://www.wmlbrowser.org/]

Wapsody
Wapsody, developed by IBM, is a freely available simulation environment that implements the
WAP specification. It also features a WML browser which can be run stand-alone. As Wapsody
is written in Java/Swing, it should work on any system.
[http://alphaworks.ibm.com/aw.nsf/techmain/wapsody]

WAPreview
WAPreview is a Wap emulator written in Java. As it uses an HTML based UI and needs a local
web proxy, it runs quite slowly.
[http://wapreview.sourceforge.net]

PicoWap
PicoWap is a small WML browser made by three French students.
[http://membres.lycos.fr/picowap/]

ACKNOWLEDGEMENTS
Werner Heuser, for his numerous ideas, advices and his help for the debugging
Igor Khristophorov, for his numerous suggestions and patches
And all the people that send me bug reports: Daniele Frijia, Axel Jerabek, Ouyang

AUTHOR
Sébastien Aperghis-Tramoni <sebastien@aperghis.net<gt>

COPYRIGHT
Copyright (C)2000, 2001, 2002 Sébastien Aperghis-Tramoni
This program is free software. You can redistribute it and/or modify it under the terms of the GNU
General Public License, version 2 or later.

26 October 2003 9

Html2Wml pod2pdf

10 26 October 2003

	Table of Contents
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Conversion Options
	-a, ‘ascii
	‘[no]collapse
	‘ignore-images
	‘[no]img-alt-text
	‘[no]linearize
	-n, ‘numeric-non-ascii
	-p, ‘nopre

	Links Reconstruction Options
	‘hreftmpl=TEMPLATE
	‘srctmpl=TEMPLATE

	Splitting Options
	-s, ‘max-card-size=SIZE
	-t, ‘card-split-threshold=SIZE
	‘next-card-label=STRING
	‘prev-card-label=STRING

	HTTP Authentication
	-U, ‘http-user=USERNAME
	-P, ‘http-passwd=PASSWORD

	Proxy Support
	-[no]Y, ‘[no]proxy

	Output Options
	-k, ‘compile
	-o, ‘output

	Debugging Options
	-d, ‘debug[=LEVEL]
	‘xmlcheck

	DECK SLICING
	Slice by cards or by decks
	Note on size calculation
	Why compiling the WML deck?

	ACTIONS
	Syntax
	Available actions
	include
	Description
	Parameters
	fsize
	Description
	Parameters
	Notes
	skip
	Description

	Generic parameters
	for=output format

	Examples

	LINKS RECONSTRUCTION
	Templates
	HREF Template
	Image Source Template

	Syntax
	Available parameters
	URL
	FILENAME
	FILEPATH
	FILETYPE

	Examples

	PROXY SUPPORT
	CAVEATS
	LINKS
	Download
	Html2Wml
	Nutialand

	Resources
	The WAP Forum
	WAP.com
	The World Wide Web Consortium
	TuxMobil

	Programmers utilities
	HTML Tidy
	Kannel
	WML Tools

	WML browsers and Wap emulators
	Opera
	wApua
	Tofoa
	EzWAP
	Deck-It
	Klondike WAP Browser
	WinWAP
	WAPman
	Wireless Companion
	Mobilizer
	QWmlBrowser
	Wapsody
	WAPreview
	PicoWap

	ACKNOWLEDGEMENTS
	AUTHOR
	COPYRIGHT

