
The SmPL Grammar (version 1.0.4 )

Research group on Coccinelle

October 13, 2018

This document presents the grammar of the SmPL language used by the Coccinelle tool. For the most part, the
grammar is written using standard notation. In some rules, however, the left-hand side is in all uppercase letters.
These are macros, which take one or more grammar rule right-hand-sides as arguments. The grammar also uses some
unspecified nonterminals, such as id, const, etc. These refer to the sets suggested by the name, i.e., id refers to the set
of possible C-language identifiers, while const refers to the set of possible C-language constants.

A square bracket that is surrounded by spaces in the description of a term should appear explicitly in the term, as
in an array reference. On the other hand, square brackets that surround some other term indicat that the presence of
that term is optional.

A HTML version of this documentation is available online at http://coccinelle.lip6.fr/docs/main_
grammar.html.

1 Program
program ::= include_cocci∗ changeset+

include_cocci ::= include string
| using string
| using pathToIsoFile
| virtual id (, id)∗

changeset ::= metavariables transformation
| script_metavariables script_code

script_code is any code in the chosen scripting language. Parsing of the semantic patch does not check the validity
of this code; any errors are first detected when the code is executed. Furthermore, @ should not be use in this code.
Spatch scans the script code for the next @ and considers that to be the beginning of the next rule, even if @ occurs
within e.g., a comment.

virtual keyword is used to declare virtual rules. Virtual rules may be subsequently used as a dependency for
the rules in the SmPL file. Whether a virtual rule is defined or not is controlled by the -D option on the command line.

2 Metavariables for transformations
The rulename portion of the metavariable declaration can specify properties of a rule such as its name, the names of
the rules that it depends on, the isomorphisms to be used in processing the rule, and whether quantification over paths
should be universal or existential. The optional annotation expression indicates that the pattern is to be considered
as matching an expression, and thus can be used to avoid some parsing problems.

The metadecl portion of the metavariable declaration defines various types of metavariables that will be used for
matching in the transformation section.

1

http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/docs/main_grammar.html
http://coccinelle.lip6.fr/docs/main_grammar.html


metavariables ::= @@ metadecl∗ @@
| @ rulename @ metadecl∗ @@

rulename ::= id [extends id] [depends on dep] [iso] [disable-iso] [exists] [expression]
dep ::= id

| !id
| !(dep)
| ever id
| never id
| dep && dep
| dep || dep
| (dep)

iso ::= using string (, string)∗

disable-iso ::= disable COMMA_LIST(id)
exists ::= exists

| forall
COMMA_LIST(elem) ::= elem (, elem)∗

The keyword disable is normally used with the names of isomorphisms defined in standard.iso or whatever
isomorphism file has been included. There are, however, some other isomorphisms that are built into the implementa-
tion of Coccinelle and that can be disabled as well. Their names are given below. In each case, the text describes the
standard behavior. Using disable-iso with the given name disables this behavior.

• optional_storage: A SmPL function definition that does not specify any visibility (i.e., static or extern),
or a SmPL variable declaration that does not specify any storage (i.e., auto, static, register, or extern), matches a
function declaration or variable declaration with any visibility or storage, respectively.

• optional_qualifier: This is similar to optional_storage, except that here it is the qualifier (i.e.,
const or volatile) that does not have to be specified in the SmPL code, but may be present in the C code.

• optional_attributes: This is similar to optional_attributes, except that here is it an attribute
(e.g., __init) that does not have to be specified in the SmPL code, but may be present in the C code. Note
that this isomorphism is currently useless, because matching of attributes is not supported, due to the
difficulty of parsing attributes in C code.

• value_format: Integers in various formats, e.g., 1 and 0x1, are considered to be equivalent in the matching
process.

• optional_declarer_semicolon: Some declarers (top-level terms that look like function calls but serve
to declare some variable) don’t require a semicolon. This isomorphism allows a SmPL declarer with a semicolon
to match such a C declarer, if no transformation is specified on the SmPL semicolon.

• comm_assoc: An expression of the form exp bin_op ..., where bin_op is commutative and associative, is
considered to match any top-level sequence of bin_op operators containing exp as the top-level argument.

• prototypes: A rule for transforming a function prototype is generated when a function header changes.

The possible types of metavariable declarations are defined by the grammar rule below. Metavariables should occur
at least once in the transformation code immediately following their declaration. Fresh identifier metavariables must
only be used in + code. These properties are not expressed in the grammar, but are checked by a subsequent analysis.
The metavariables are designated according to the kind of terms they can match, such as a statement, an identifier,
or an expression. An expression metavariable can be further constrained by its type. A declaration metavariable
matches the declaration of one or more variables, all sharing the same type specification (e.g., int a,b,c=3;). A
field metavariable does the same, but for structure fields. In the minus code, a statement list metavariable can only
appear as a complete function body or as the complete body of a sequence statement. In the plus code, a statement list
metavariable can occur anywhere a statement list is allowed, i.e., including as an element of another statement list.

2



metadecl ::= metavariable ids ;
| fresh identifier ids ;
| identifier COMMA_LIST(pmid_with_regexp) ;
| identifier COMMA_LIST(pmid_with_virt_or_not_eq) ;
| parameter [list] ids ;
| parameter list [ id ] ids ;
| parameter list [ const ] ids ;
| type ids ;
| statement [list] ids ;
| declaration ids ;
| field [list] ids ;
| typedef ids ;
| attribute ids ;
| declarer name ids ;
| declarer COMMA_LIST(pmid_with_regexp) ;
| declarer COMMA_LIST(pmid_with_not_eq) ;
| iterator name ids ;
| iterator COMMA_LIST(pmid_with_regexp) ;
| iterator COMMA_LIST(pmid_with_not_eq) ;
| [local | global] idexpression [ctype] COMMA_LIST(pmid_with_not_eq) ;
| [local | global] idexpression [{ctypes} *

∗] COMMA_LIST(pmid_with_not_eq) ;
| [local | global] idexpression *

+ COMMA_LIST(pmid_with_not_eq) ;
| expression list ids ;
| expression *

+ COMMA_LIST(pmid_with_not_eq) ;
| expression enum *

∗ COMMA_LIST(pmid_with_not_eq) ;
| expression struct *

∗ COMMA_LIST(pmid_with_not_eq) ;
| expression union *

∗ COMMA_LIST(pmid_with_not_eq) ;
| expression COMMA_LIST(pmid_with_not_ceq) ;
| expression list [ id ] ids ;
| expression list [ const ] ids ;
| ctype [ ] COMMA_LIST(pmid_with_not_eq) ;
| ctype COMMA_LIST(pmid_with_not_ceq) ;
| {ctypes} *

∗ COMMA_LIST(pmid_with_not_ceq) ;
| {ctypes} *

∗ [ ] COMMA_LIST(pmid_with_not_eq) ;
| constant [ctype] COMMA_LIST(pmid_with_not_eq) ;
| constant [{ctypes} *

∗] COMMA_LIST(pmid_with_not_eq) ;
| position [any] COMMA_LIST(pmid_with_not_eq_mid) ;
| symbol ids;
| format ids;
| format list [ id ] ids ;
| format list [ const ] ids ;
| assignment operator COMMA_LIST(assignopdecl) ;
| binary operator COMMA_LIST(binopdecl) ;

assignopdecl ::= id [ = assignop_contraint]
assignop_contraint ::= {COMMA_LIST(assign_op)}

| assign_op
binopdecl ::= id [ = binop_contraint]
binop_contraint ::= {COMMA_LIST(bin_op)}

| bin_op

A metavariable declaration local idexpression v means that v is restricted to be a local variable. If it should just be

3



a variable, but not necessarily a local one, then drop local. A more complex description of a location, such as a->b is
considered to be an expression, not an idexpression.

Constant is for constants, such as 27. But it also considers an identifier that is all capital letters (possibly containing
numbers) as a constant as well, because the names given to macros in Linux usually have this form.

An identifier is the name of a structure field, a macro, a function, or a variable. Is is the name of something rather
than an expression that has a value. But an identifier can be used in the position of an expression as well, where it
represents a variable.

It is possible to specify that an expression list or a parameter list metavariable should match a specific number of
expressions or parameters.

It is possible to specify some information about the definition of a fresh identifier. See the wiki.
A symbol declaration specifies that the provided identifiers should be considered C identifiers when encountered

in the body of the rule. Identifiers in the body of the rule that are not declared explicitly are by default considered
symbols, thus symbol declarations are optional.

An attribute declaration indicates a name that should be considered to be an attribute. It is not possible to match or
remove an attribute, only to add one.

A position metavariable is used by attaching it using @ to any token, including another metavariable. Its value
is the position (file, line number, etc.) of the code matched by the token. It is also possible to attach expression,
declaration, type, initialiser, and statement metavariables in this manner. In that case, the metavariable is bound to the
closest enclosing expression, declaration, etc. If such a metavariable is itself followed by a position metavariable, the
position metavariable applies to the metavariable that it follows, and not to the attached token. This makes it possible
to get eg the starting and ending position of f(...), by writing f(...)@E@p, for expression metavariable E and
position metavariable p.

When used, a format or format list metavariable must be enclosed by a pair of @s. A format metavariable matches
the format descriptor part, i.e., 2x in %2x. A format list metavariable matches a sequence of format descriptors as
well as the text between them. Any text around them is matched as well, if it is not matched by the surrounding text
in the semantic patch. Such text is not partially matched. If the length of the format list is specified, that indicates
the number of matched format descriptors. It is also possible to use ... in a format string, to match a sequence of
text fragments and format descriptors. This only takes effect if the format string contains format descriptors. Note
that this makes it impossible to require ... to match exactly in a string, if the semantic patch string contains format
descriptors. If that is needed, some processing with a scripting language would be required. And example for the use
of string format metavariables is found in demos/format.cocci.

Assignment (resp. binary) operator metavariables match any assignment (resp. binary) operator. The list of
operators that can be matched can be restricted by adding an operator constraint, i.e. a list of accepted operators.

Other kinds of metavariables can also be attached using @ to any token. In this case, the metavariable floats up
to the enclosing appropriate expression. For example, 3 +@E 4, where E is an expression metavariable binds E to
3 + 4. A particular case is Ps@Es, where Ps is a parameter list and Es is an expression list. This pattern matches
a parameter list, and then matches Es to the list of expressions, ie a possible argument list, represented by the names
of the parameters. Another particular case is E@S, where E is any expression and S is a statement metavariable. S
matches the closest enclosing statement, which may be more than what is matches by the semantic match pattern itself.

Matching of various kinds of format strings within strings is supported. With the -ibm option, matching of
decimal format declarations is supported, but the length and precision arguments are not interpreted. Thus it is not
possible to match metavariables in these fields. Instead, the entire format is matched as a single string.

4



ids ::= COMMA_LIST(pmid)
pmid ::= id

| mid
mid ::= rulename_id.id
pmid_with_regexp ::= pmid =˜ regexp

| pmid !˜ regexp
pmid_with_not_eq ::= pmid [!= id_or_meta]

| pmid [!= { COMMA_LIST(id_or_meta) }]
pmid_with_virt_or_not_eq ::= virtual.id

| pmid_with_not_eq
pmid_with_not_ceq ::= pmid [!= id_or_cst]

| pmid [!= { COMMA_LIST(id_or_cst) }]
id_or_cst ::= id

| integer
id_or_meta ::= id

| rulename_id.id
pmid_with_not_eq_mid ::= pmid [!= mid]

| pmid [!= { COMMA_LIST(mid) }]

Subsequently, we refer to arbitrary metavariables as metaidty, where ty indicates the metakind used in the decla-
ration of the variable. For example, metaidType refers to a metavariable that was declared using type and stands for
any type.

metavariable declares a metavariable for which the parser tried to figure out the metavariable type based
on the usage context. Such a metavariable must be used consistently. These metavariables cannot be used in all
contexts; specifically, they cannot be used in context that would make the parsing ambiguous. Some examples are the
leftmost term of an expression, such as the left-hand side of an assignment, or the type in a variable declaration. These
restrictions may seems somewhat arbitrary from the user’s point of view. Thus, it is better to use metavariables with
metavariable types. If Coccinelle is given the argument -parse_cocci, it will print information about the type that
is inferred for each metavariable.

The ctype and ctypes nonterminals are used by both the grammar of metavariable declarations and the grammar of
transformations, and are defined on page 9.

An identifier metavariable with virtual as its “rule name” is given a value on the command line. For example,
if a semantic patch contains a rule that declares an identifier metavariable with the name virtual.alloc, then
the command line could contain -D alloc=kmalloc. There should not be space around the =. An example is in
demos/vm.cocci and demos/vm.c.

It is possible to give an identifier metavariable a list of constraints that it should or should not be equal to. If the
constraint is a list of (unquoted) strings, then the value of the metavariable should be the same as one of the strings, in
the case of an equality constraint, or different from all of the strings, in the case of an inequality constraint. It is also
possible to include inherited identifier metavariables among the constraints. In the case of a positive constraint, things
work in the same way, but not with respect to the inherited value of the metavariable. On the other hand, an inequality
constraint does not work so well, because the only value available is the one available in the current environment. If
the proposed value is different from the one in the current environment, but perhaps the same as the one in some other
environment, the match will still succeed.

Warning: Each metavariable declaration causes the declared metavariables to be immediately usable, without any
inheritance indication. Thus the following are correct:

@@
type r.T;
T x;
@@

5



[...] // some semantic patch code

@@
r.T x;
type r.T;
@@

[...] // some semantic patch code

But the following is not correct:

@@
type r.T;
r.T x;
@@

[...] // some semantic patch code

This applies to position variables, type metavariables, identifier metavariables that may be used in specifying a
structure type, and metavariables used in the initialization of a fresh identifier. In the case of a structure type, any
identifier metavariable indeed has to be declared as an identifier metavariable in advance. The syntax does not permit
r.n as the name of a structure or union type in such a declaration.

3 Metavariables for scripts
Metavariables for scripts can only be inherited from transformation rules. In the spirit of scripting languages such as
Python that use dynamic typing, metavariables for scripts do not include type declarations.

script_metavariables ::= @ script:language [rulename] [depends on dep] @ script_metadecl∗ @@
| @ initialize:language [depends on dep] @ script_virt_metadecl∗ @@
| @ finalize:language [depends on dep] @ script_virt_metadecl∗ @@

language ::= python
| ocaml

script_metadecl ::= id << rulename_id.id ;
| id << rulename_id.id = "..." ;
| id << rulename_id.id = [] ;
| id ;

script_virt_metadecl ::= id << virtual.id ;

Currently, the only scripting languages that are supported are Python and OCaml, indicated using python and
ocaml, respectively. The set of available scripting languages may be extended at some point.

Script rules declared with initialize are run before the treatment of any file. Script rules declared with
finalize are run when the treatment of all of the files has completed. There can be at most one of each per
scripting language (thus currently at most one of each). Initialize and finalize script rules do not have access to SmPL
metavariables. Nevertheless, a finalize script rule can access any variables initialized by the other script rules, allowing
information to be transmitted from the matching process to the finalize rule.

Initialize and finalize rules do have access to virtual metavariables, using the usual syntax. As for other scripting
language rules, the rule is not run (and essentially does not exist) if some of the required virtual metavariables are not
bound. In ocaml, a warning is printed in this case. An example is found in demos/initvirt.cocci.

A script metavariable that does not specify an origin, using «, is newly declared by the script. This metavari-
able should be assigned to a string and can be inherited by subsequent rules as an identifier. In Python, the as-
signment of such a metavariable x should refer to the metavariable as coccinelle.x. Examples are in the files
demos/pythontococci.cocci and demos/camltococci.cocci.

In an OCaml script, the following extended form of script_metadecl may be used:

6



script_metadecl’ ::= (id,id) << rulename_id.id ;
| id << rulename_id.id ;
| id ;

In a declaration of the form (id,id) << rulename_id.id ;, the left component of (id,id) receives a string repre-
sentation of the value of the inherited metavariable while the right component receives its abstract syntax tree. The
file parsing_c/ast_c.ml in the Coccinelle implementation gives some information about the structure of the
abstract syntax tree. Either the left or right component may be replaced by _, indicating that the string representation
or abstract syntax trees representation is not wanted, respectively.

The abstract syntax tree of a metavariable declared using metavariable is not available.
Script metavariables can have default values. This is only allowed if the abstract syntax tree of the metavariable

is not requested. The default value of a position metavariable is written as []. The default value of any other kind
of metavariable is a string. There is no control that the string actually represents the kind of term represented by the
metavariable. Normally, a script rule is only applied if all of the metavariables have values. If default values are
provided, then the script rule is only applied if all of the metavariables for which there are no default values have
values. See demos/defaultscript.cocci for examples of the use of this feature.

4 Transformation
The transformation specification essentially has the form of C code, except that lines to remove are annotated with -
in the first column, and lines to add are annotated with +. A transformation specification can also use dots, “...”,
describing an arbitrary sequence of function arguments or instructions within a control-flow path. Implicitly, “...”
matches the shortest path between something that matches the pattern before the dots (or the beginning of the function,
if there is nothing before the dots) and something that matches the pattern after the dots (or the end of the function, if
there is nothing after the dots). Dots may be modified with a when clause, indicating a pattern that should not occur
anywhere within the matched sequence. when any removes the aforementioned constraint that “...” matches the
shortest path. Finally, a transformation can specify a disjunction of patterns, of the form ( pat1 | . . . | patn )
where each (, | or ) is in column 0 or preceded by \.

The grammar that we present for the transformation is not actually the grammar of the SmPL code that can be
written by the programmer, but is instead the grammar of the slice of this consisting of the - annotated and the
unannotated code (the context of the transformed lines), or the + annotated code and the unannotated code. For
example, for parsing purposes, the following transformation is split into the two variants shown below and each is
parsed separately.

1 proc_info_func(...) {
2 <...
3 - hostno
4 + hostptr->host_no
5 ...>
6 }

1 proc_info_func(...) {
2 <...
3 - hostno
4 ...>
5 }

1 proc_info_func(...) {
2 <...
3 + hostptr->host_no
4 ...>
5 }

Requiring that both slices parse correctly ensures that the rule matches syntactically valid C code and that it pro-
duces syntactically valid C code. The generated parse trees are then merged for use in the subsequent matching and
transformation process.

7



The grammar for the minus or plus slice of a transformation is as follows:

transformation ::= include+

| OPTDOTSEQ(top, when)
include ::= #include include_string
top ::= expr

| decl_stmt+

| fundecl
when ::= when != when_code

| when = rule_elem_stmt
| when COMMA_LIST(any_strict)
| when true != expr
| when false != expr

when_code ::= OPTDOTSEQ(decl_stmt+, when)
| OPTDOTSEQ(expr, when)

rule_elem_stmt ::= one_decl
| expr;
| return [expr];
| break;
| continue;
| \(rule_elem_stmt (\| rule_elem_stmt)+\)

any_strict ::= any
| strict
| forall
| exists

OPTDOTSEQ(grammar_ds, when_ds) ::=
[... (when_ds)∗] grammar_ds (... (when_ds)∗ grammar_ds)∗ [... (when_ds)∗]

Lines may be annotated with an element of the set {-,+,*} or the singleton ?, or one of each set. ? represents at most
one match of the given pattern, ie a match of the pattern is optional. * is used for semantic match, i.e., a pattern that
highlights the fragments annotated with *, but does not perform any modification of the matched code. * cannot be
mixed with - and +. There are some constraints on the use of these annotations:

• Dots, i.e. ..., cannot occur on a line marked +.

• Nested dots, i.e., dots enclosed in < and >, cannot occur on a line marked +.

Each element of a disjunction must be a proper term like an expression, a statement, an identifier or a declaration.
Thus, the rule on the left below is not a syntactically correct SmPL rule. One may use the rule on the right instead.

1 @@
2 type T;
3 T b;
4 @@
5

6 (
7 writeb(...,
8 |
9 readb(...,

10 )
11 -(T)
12 b)

1 @@
2 type T;
3 T b;
4 @@
5

6 (
7 read
8 |
9 write

10 )
11 (...,
12 - (T)
13 b)

Some kinds of terms can only appear in + code. These include comments, ifdefs, and attributes (__attribute__((...))).

8



5 Types
ctypes ::= COMMA_LIST(ctype)
ctype ::= [const_vol] generic_ctype *

∗

| [const_vol] void *
+

| (ctype (| ctype)∗)
const_vol ::= const

| volatile
generic_ctype ::= ctype_qualif

| [ctype_qualif ] char
| [ctype_qualif ] short
| [ctype_qualif ] short int
| [ctype_qualif ] int
| [ctype_qualif ] long
| [ctype_qualif ] long int
| [ctype_qualif ] long long
| [ctype_qualif ] long long int
| double
| long double
| float
| size_t
| ssize_t
| ptrdiff_t
| enum id { PARAMSEQ(dot_expr, exp_whencode) [,] }
| [struct| union] id [{ struct_decl_list∗ }]

ctype_qualif ::= unsigned
| signed

struct_decl_list ::= struct_decl_list_start
struct_decl_list_start ::= struct_decl

| struct_decl struct_decl_list_start
| ... [when != struct_decl]† [continue_struct_decl_list]

continue_struct_decl_list ::= struct_decl struct_decl_list_start
| struct_decl

struct_decl ::= ctype d_ident;
| fn_ctype (* d_ident) (PARAMSEQ(name_opt_decl, ε));)
| [const_vol] id d_ident;

d_ident ::= id [[expr]]∗

fn_ctype ::= generic_ctype *
∗

| void *
∗

name_opt_decl ::= decl
| ctype
| fn_ctype

† The optional when construct ends at the end of the line.

9



6 Function declarations
fundecl ::= [fn_ctype] funinfo∗ funid ([PARAMSEQ(param, ε)]) { [stmt_seq] }
funproto ::= [fn_ctype] funinfo∗ funid ([PARAMSEQ(param, ε)]);
funinfo ::= inline

| storage
storage ::= static

| auto
| register
| extern

funid ::= id
| metaidId

| OR(stmt)
param ::= type id

| metaidParam

| metaidParamList

| ......
decl ::= ctype id

| fn_ctype (* id) (PARAMSEQ(name_opt_decl, ε))
| void
| metaidParam

PARAMSEQ(gram_p, when_p) ::= COMMA_LIST(gram_p | ...[when_p])

To match a function it is not necessary to provide all of the annotations that appear before the function name. For
example, the following semantic patch:

1 @@
2 @@
3

4 foo() { ... }

matches a function declared as follows:

1 static int foo() { return 12; }

This behavior can be turned off by disabling the optional_storage isomorphism. If one adds code before a
function declaration, then the effect depends on the kind of code that is added. If the added code is a function definition
or CPP code, then the new code is placed before all information associated with the function definition, including any
comments preceding the function definition. On the other hand, if the new code is associated with the function, such
as the addition of the keyword static, the new code is placed exactly where it appears with respect to the rest of the
function definition in the semantic patch. For example,

1 @@
2 @@
3

4 + static
5 foo() { ... }

causes static to be placed just before the function name. The following causes it to be placed just before the type

1 @@
2 type T;
3 @@
4

5 + static
6 T foo() { ... }

10



It may be necessary to consider several cases to ensure that the added ode is placed in the right position. For example,
one may need one pattern that considers that the function is declared inline and another that considers that it is not.

Varargs are written in C using .... Unfortunately, this notation is already used in the semantic patch language. A
pattern for a varargs parameter is written as a sequence of 6 dots.

The C parser allows functions that have no return type, and assumes that the return type is int. The support for
parsing such functions is limited. In particular, the parameter list must contain a type for each parameter, and may not
contain varargs.

7 Declarations

decl_var ::= common_decl
| [storage] ctype COMMA_LIST(d_ident) ;
| [storage] [const_vol] id COMMA_LIST(d_ident) ;
| [storage] fn_ctype ( * d_ident ) ( PARAMSEQ(name_opt_decl, ε) ) = initialize ;
| typedef ctype typedef_ident ;

one_decl ::= common_decl
| [storage] ctype id;
| [storage] [const_vol] id d_ident ;

common_decl ::= ctype;
| funproto
| [storage] ctype d_ident = initialize ;
| [storage] [const_vol] id d_ident = initialize ;
| [storage] fn_ctype ( * d_ident ) ( PARAMSEQ(name_opt_decl, ε) ) ;
| decl_ident ( [COMMA_LIST(expr)] ) ;

initialize ::= dot_expr
| metaidInitialiser

| { [COMMA_LIST(init_list_elem)] }
init_list_elem ::= dot_expr

| designator = initialize
| metaidInitialiser

| metaidInitialiserList

| id : dot_expr
designator ::= . id

| [ dot_expr ]
| [ dot_expr ... dot_expr ]

decl_ident ::= DeclarerId
| metaidDeclarer

An initializer for a structure can be ordered or unordered. It is considered to be unordered if there is at least one
key-value pair initializer, e.g., .x = e.

A declaration can have e.g. the form register x;. In this case, the variable implicitly has type int, and SmPL
code that declares an int variable will match such a declaration. On the other hand, the implicit int type has no position.
If the SmPL code tries to record the position of the type, the match will fail.

8 Statements
The first rule statement describes the various forms of a statement. The remaining rules implement the constraints that
are sensitive to the context in which the statement occurs: single_statement for a context in which only one statement
is allowed, and decl_statement for a context in which a declaration, statement, or sequence thereof is allowed.

11



stmt ::= directive
| metaidStmt

| expr;
| if (dot_expr) single_stmt [else single_stmt]
| for ([dot_expr]; [dot_expr]; [dot_expr]) single_stmt
| while (dot_expr) single_stmt
| do single_stmt while (dot_expr);
| iter_ident (dot_expr∗) single_stmt
| switch ([dot_expr]) {case_line∗ }
| return [dot_expr];
| { [stmt_seq] }
| NEST(decl_stmt+, when)
| NEST(expr, when)
| break;
| continue;
| id:
| goto id;
| {stmt_seq }

directive ::= include
| #define id [top]
| #define id (PARAMSEQ(id, ε)) [top]
| #undef id
| #pragma id id+

| #pragma id (PARAMSEQ(expr, ε))
| #pragma id ...

single_stmt ::= stmt
| OR(stmt)

decl_stmt ::= metaidStmtList

| decl_var
| stmt
| OR(stmt_seq)

stmt_seq ::= decl_stmt∗ [DOTSEQ(decl_stmt+, when) decl_stmt∗]
| decl_stmt∗ [DOTSEQ(expr, when) decl_stmt∗]

case_line ::= default : stmt_seq
| case dot_expr : stmt_seq

iter_ident ::= IteratorId
| metaidIterator

OR(gram_o) ::= ( gram_o (|gram_o)∗)
DOTSEQ(gram_d, when_d) ::= ...[when_d] (gram_d ...[when_d])∗

NEST(gram_n, when_n) ::= <...[when_n] gram_n (...[when_n] gram_n)∗ ...>
| <+...[when_n] gram_n (...[when_n] gram_n)∗ ...+>

OR is a macro that generates a disjunction of patterns. The three tokens (, |, and ) must appear in the leftmost column,
to differentiate them from the parentheses and bit-or tokens that can appear within expressions (and cannot appear in
the leftmost column). These token may also be preceded by \ when they are used in an other column. These tokens
are furthermore different from (, |, and ), which are part of the grammar metalanguage.

9 Expressions
A nest or a single ellipsis is allowed in some expression contexts, and causes ambiguity in others. For example, in
a sequence ...expr ..., the nonterminal expr must be instantiated as an explicit C-language expression, while

12



in an array reference, expr1 [ expr2 ], the nonterminal expr2, because it is delimited by brackets, can be also
instantiated as ..., representing an arbitrary expression. To distinguish between the various possibilities, we define
three nonterminals for expressions: expr does not allow either top-level nests or ellipses, nest_expr allows a nest but
not an ellipsis, and dot_expr allows both. The EXPR macro is used to express these variants in a concise way.

expr ::= EXPR(expr)
nest_expr ::= EXPR(nest_expr)

| NEST(nest_expr, exp_whencode)
dot_expr ::= EXPR(dot_expr)

| NEST(dot_expr, exp_whencode)
| ... [exp_whencode]

EXPR(exp) ::= exp assign_op exp
| exp metaidAssignOp exp
| exp++
| exp-
| unary_op exp
| exp bin_op exp
| exp metaidBinOp exp
| exp ? dot_expr : exp
| (type) exp
| exp [dot_expr]
| exp . id
| exp -> id
| exp([PARAMSEQ(arg, exp_whencode)])
| id
| (type) { COMMA_LIST(init_list_elem) }
| metaidExp

| metaidConst

| const
| (dot_expr)
| OR(exp)

arg ::= nest_expr
| metaidExpList

exp_whencode ::= when != expr
assign_op ::= = | -= | += | *= | /= | %=

| &= | |= | ˆ= | <<= | >>=
bin_op ::= * | / | % | + | -

| <<| >>| ˆ | & | |
| < | > | <= | >= | == | != | && | ||

unary_op ::= ++ | - | & | * | + | - | !

13



10 Constants, Identifiers and Types for Transformations
const ::= string

| [0-9]+
| · · ·

string ::= "[ˆ"]∗"
id ::= id | metaidId | OR(stmt)
typedef_ident ::= id | metaidType

type ::= ctype | metaidType

pathToIsoFile ::= <.*>
regexp ::= "[ˆ"]∗"

11 Comments and preprocessor directives
A // or /* */ comment that is annotated with + in the leftmost column is considered to be added code. A // or
/* */ comment without such an annotation is considered to be a comment about the SmPL code, and thus is not
matched in the C code.

The following preprocessor directives can likewise be added. They cannot be matched against. The entire line is
added, but it is not parsed.

• if

• ifdef

• ifndef

• else

• elif

• endif

• error

• line

12 Command-line semantic match
It is possible to specify a semantic match on the spatch command line, using the argument -sp. In such a semantic
match, any token beginning with a capital letter is assumed to be a metavariable of type metavariable. In this
case, the parser must be able to figure out what kind of metavariable it is. It is also possible to specify the type of a
metavariable by enclosing the type in :’s, concatenated directly to the metavariable name.

Some examples of semantic matches that can be given as an argument to -sp are as follows:

• f(e): This only matches the expression f(e).

• f(E): This matches a call to f with any argument.

• F(E): This gives a parse error; the semantic patch parser cannot figure out what kind of metavariable F is.

• F:identifier:(E): This matches any one argument function call.

• f:identifier:(e:struct foo *:): This matches any one argument function call where the argu-
ment has type struct foo *. Since the types of the metavariables are specified, it is not necessary for the
metavariable names to begin with a capital letter.

14



• F:identifier:(F): This matches any one argument function call where the argument is the name of the
function itself. This example shows that it is not necessary to repeat the metavariable type name.

• F:identifier:(F:identifier:): This matches any one argument function call where the argument is
the name of the function itself. This example shows that it is possible to repeat the metavariable type name.

When constraints, e.g. when != e, are allowed but the expression e must be represented as a single token.
The generated semantic match behaves as though there were a * in front of every token.

13 Iteration
It is possible to iterate Coccinelle, giving the subsequent iterations a different set of virtual rules or virtual identifier
bindings. And example is found in demos/iteration.cocci. The example shown there is as follows:

virtual after_start

@initialize:ocaml@

let tbl = Hashtbl.create(100)

let add_if_not_present from f file =
try let _ = Hashtbl.find tbl (f,file) in ()
with Not_found ->

Hashtbl.add tbl (f,file) file;
let it = new iteration() in
(match file with

Some fl -> it#set_files [fl]
| None -> ());
it#add_virtual_rule After_start;
it#add_virtual_identifier Err_ptr_function f;
it#register()

The virtual rule after_start is used to distinguish between the first iteration (in which it is not considered to
have matched) and all others. This is done by not mentioning after_start in the command line, but adding it on
each iteration.

The main code for performing the iteration is found in the function add_if_not_present, between the lines
calling new iteration and register. New iteration creates a structure representing the new iteration.
set_files sets the list of files to be considered on the new iteration. If this function is not called, the new iteration
treats the same files as the current iteration. add_virtual_rule A has the same effect as putting -D a on
the command line. Note that the first letter of the rule name is capitalized, although this is not done elsewhere.
add_virtual_identifier X v has the same effect as putting -D x=v on the command line. Note again
the case change. extend_virtual_identifiers() (not shown) preserves all virtual identifiers of the current
iteration that are not overridden by calls to add_virtual_identifier. Finally, the call to register queues
the collected information to trigger a new iteration at some time in the future.

Modification is not allowed when using iteration. Thus, it is required to use the -no-show-diff, unless the
semantic patch contains *s (a semantic match rather than a semantic patch).

The remainder of the code above uses a hash table to ensure that the same information is not enqueued more than
once. Coccinelle itself provides no support for this.

15



14 Examples
This section presents a range of examples. Each example is presented along with some C code to which it is applied.
The description explains the rules and the matching process.

14.1 Function renaming
One of the primary goals of Coccinelle is to perform software evolution. For instance, Coccinelle could be used to
perform function renaming. In the following example, every occurrence of a call to the function foo is replaced by a
call to the function bar.

Before Semantic patch After

1 #DEFINE TEST "foo"
2

3 printf("foo");
4

5 int main(int i) {
6 //Test
7 int k = foo();
8

9 if(1) {
10 foo();
11 } else {
12 foo();
13 }
14

15 foo();
16 }

1 @@
2

3 @@
4

5

6 - foo()
7 + bar()

1 #DEFINE TEST "foo"
2

3 printf("foo");
4

5 int main(int i) {
6 //Test
7 int k = bar();
8

9 if(1) {
10 bar();
11 } else {
12 bar();
13 }
14

15 bar();
16 }

16



14.2 Removing a function argument
Another important kind of evolution is the introduction or deletion of a function argument. In the following example,
the rule rule1 looks for definitions of functions having return type irqreturn_t and two parameters. A second
anonymous rule then looks for calls to the previously matched functions that have three arguments. The third argument
is then removed to correspond to the new function prototype.

1 @ rule1 @
2 identifier fn;
3 identifier irq, dev_id;
4 typedef irqreturn_t;
5 @@
6

7 static irqreturn_t fn (int irq, void *dev_id)
8 {
9 ...

10 }
11

12 @@
13 identifier rule1.fn;
14 expression E1, E2, E3;
15 @@
16

17 fn(E1, E2
18 - ,E3
19 )

drivers/atm/firestream.c at line 1653 before transformation

1 static void fs_poll (unsigned long data)
2 {
3 struct fs_dev *dev = (struct fs_dev *) data;
4

5 fs_irq (0, dev, NULL);
6 dev->timer.expires = jiffies + FS_POLL_FREQ;
7 add_timer (&dev->timer);
8 }

drivers/atm/firestream.c at line 1653 after transformation

1 static void fs_poll (unsigned long data)
2 {
3 struct fs_dev *dev = (struct fs_dev *) data;
4

5 fs_irq (0, dev);
6 dev->timer.expires = jiffies + FS_POLL_FREQ;
7 add_timer (&dev->timer);
8 }

17



14.3 Introduction of a macro
To avoid code duplication or error prone code, the kernel provides macros such as BUG_ON, DIV_ROUND_UP and
FIELD_SIZE. In these cases, the semantic patches look for the old code pattern and replace it by the new code.

A semantic patch to introduce uses of the DIV_ROUND_UP macro looks for the corresponding expression, i.e.,
(n+ d− 1)/d. When some code is matched, the metavariables n and d are bound to their corresponding expressions.
Finally, Coccinelle rewrites the code with the DIV_ROUND_UPmacro using the values bound to n and d, as illustrated
in the patch that follows.

Semantic patch to introduce uses of the DIV_ROUND_UP macro

1 @ haskernel @
2 @@
3

4 #include <linux/kernel.h>
5

6 @ depends on haskernel @
7 expression n,d;
8 @@
9

10 (
11 - (((n) + (d)) - 1) / (d))
12 + DIV_ROUND_UP(n,d)
13 |
14 - (((n) + ((d) - 1)) / (d))
15 + DIV_ROUND_UP(n,d)
16 )

Example of a generated patch hunk

1 --- a/drivers/atm/horizon.c
2 +++ b/drivers/atm/horizon.c
3 @@ -698,7 +698,7 @@ got_it:
4 if (bits)
5 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
6 if (actual) {
7 - *actual = (br + (pre<<div) - 1) / (pre<<div);
8 + *actual = DIV_ROUND_UP(br, pre<<div);
9 PRINTD (DBG_QOS, "actual rate: %u", *actual);

10 }
11 return 0;

18



The BUG_ON macro makes an assertion about the value of an expression. However, because some parts of the
kernel define BUG_ON to be the empty statement when debugging is not wanted, care must be taken when the asserted
expression may have some side-effects, as is the case of a function call. Thus, we create a rule introducing BUG_ON
only in the case when the asserted expression does not perform a function call.

One particular piece of code that has the form of a function call is a use of unlikely, which informs the com-
piler that a particular expression is unlikely to be true. In this case, because unlikely does not perform any side
effect, it is safe to use BUG_ON. The second rule takes care of this case. It furthermore disables the isomorphism that
allows a call to unlikely to be replaced with its argument, as then the second rule would be the same as the first one.

1 @@
2 expression E,f;
3 @@
4

5 (
6 if (<+... f(...) ...+>) { BUG(); }
7 |
8 - if (E) { BUG(); }
9 + BUG_ON(E);

10 )
11

12 @ disable unlikely @
13 expression E,f;
14 @@
15

16 (
17 if (<+... f(...) ...+>) { BUG(); }
18 |
19 - if (unlikely(E)) { BUG(); }
20 + BUG_ON(E);
21 )

For instance, using the semantic patch above, Coccinelle generates patches like the following one.

1 --- a/fs/ext3/balloc.c
2 +++ b/fs/ext3/balloc.c
3 @@ -232,8 +232,7 @@ restart:
4 prev = rsv;
5 }
6 printk("Window map complete.\n");
7 - if (bad)
8 - BUG();
9 + BUG_ON(bad);

10 }
11 #define rsv_window_dump(root, verbose) \
12 __rsv_window_dump((root), (verbose), __FUNCTION__)

19



14.4 Look for NULL dereference
This SmPL match looks for NULL dereferences. Once an expression has been compared to NULL, a dereference to
this expression is prohibited unless the pointer variable is reassigned.

Original

1 foo = kmalloc(1024);
2 if (!foo) {
3 printk ("Error %s", foo->here);
4 return;
5 }
6 foo->ok = 1;
7 return;

Semantic match

1 @@
2 expression E, E1;
3 identifier f;
4 statement S1,S2,S3;
5 @@
6

7 * if (E == NULL)
8 {
9 ... when != if (E == NULL) S1 else S2

10 when != E = E1
11 * E->f
12 ... when any
13 return ...;
14 }
15 else S3

Matched lines

1 foo = kmalloc(1024);
2 if (!foo) {
3 printk ("Error %s", foo->here);
4 return;
5 }
6 foo->ok = 1;
7 return;

20



14.5 Reference counter: the of_xxx API
Coccinelle can embed Python code. Python code is used inside special SmPL rule annotated with script:python.
Python rules inherit metavariables, such as identifier or token positions, from other SmPL rules. The inherited
metavariables can then be manipulated by Python code.

The following semantic match looks for a call to the of_find_node_by_name function. This call increments
a counter which must be decremented to release the resource. Then, when there is no call to of_node_put, no new
assignment to the device_node variable n and a return statement is reached, a bug is detected and the position
p1 and p2 are initialized. As the Python only depends on the positions p1 and p2, it is evaluated. In the following
case, some emacs Org mode data are produced. This example illustrates the various fields that can be accessed in the
Python code from a position variable.

1 @ r exists @
2 local idexpression struct device_node *n;
3 position p1, p2;
4 statement S1,S2;
5 expression E,E1;
6 @@
7

8 (
9 if (!(n@p1 = of_find_node_by_name(...))) S1

10 |
11 n@p1 = of_find_node_by_name(...)
12 )
13 <... when != of_node_put(n)
14 when != if (...) { <+... of_node_put(n) ...+> }
15 when != true !n || ...
16 when != n = E
17 when != E = n
18 if (!n || ...) S2
19 ...>
20 (
21 return <+...n...+>;
22 |
23 return@p2 ...;
24 |
25 n = E1
26 |
27 E1 = n
28 )
29

30 @ script:python @
31 p1 << r.p1;
32 p2 << r.p2;
33 @@
34

35 print "* TODO [[view:%s::face=ovl-face1::linb=%s::colb=%s::cole=%s][inc.
counter:%s::%s]]" % (p1[0].file,p1[0].line,p1[0].column,p1[0].column_end,
p1[0].file,p1[0].line)

36 print "[[view:%s::face=ovl-face2::linb=%s::colb=%s::cole=%s][return]]" % (p2
[0].file,p2[0].line,p2[0].column,p2[0].column_end)

21



Lines 13 to 17 list a variety of constructs that should not appear between a call to of_find_node_by_name
and a buggy return site. Examples are a call to of_node_put (line 13) and a transition into the then branch of a
conditional testing whether n is NULL (line 15). Any number of conditionals testing whether n is NULL are allowed
as indicated by the use of a nest <... ...> to describe the path between the call to of_find_node_by_name,
the return and the conditional in the pattern on line 18.

The previous semantic match has been used to generate the following lines. They may be edited using the emacs
Org mode to navigate in the code from a site to another.

1 * TODO [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-
face1::linb=236::colb=18::cole=20][inc. counter:/linux-next/arch/powerpc/
platforms/pseries/setup.c::236]]

2 [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-face2::
linb=250::colb=3::cole=9][return]]

3 * TODO [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-
face1::linb=236::colb=18::cole=20][inc. counter:/linux-next/arch/powerpc/
platforms/pseries/setup.c::236]]

4 [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-face2::
linb=245::colb=3::cole=9][return]]

Note : Coccinelle provides some predefined Python functions, i.e., cocci.print_main, cocci.print_sec
and cocci.print_secs. One could alternatively write the following SmPL rule instead of the previously pre-
sented one.

1 @ script:python @
2 p1 << r.p1;
3 p2 << r.p2;
4 @@
5

6 cocci.print_main(p1)
7 cocci.print_sec(p2,"return")

The function cocci.print_secs is used when several positions are matched by a single position variable and
every matched position should be printed.

Any metavariable could be inherited in the Python code. However, accessible fields are not currently equally
supported among them.

22



14.6 Filtering identifiers, declarers or iterators with regular expressions
If you consider the following SmPL file which uses the regexp functionality to filter the identifiers that contain, begin
or end by foo,

1 @anyid@
2 type t;
3 identifier id;
4 @@
5 t id () {...}
6

7 @script:python@
8 x << anyid.id;
9 @@

10 print "Identifier: %s" % x
11

12 @contains@
13 type t;
14 identifier foo =~ ".*foo";
15 @@
16 t foo () {...}
17

18 @script:python@
19 x << contains.foo;
20 @@
21 print "Contains foo: %s" % x

23 @endsby@
24 type t;
25 identifier foo =~ ".*foo$";
26 @@
27

28 t foo () {...}
29

30 @script:python@
31 x << endsby.foo;
32 @@
33 print "Ends by foo: %s" % x
34

35 @beginsby@
36 type t;
37 identifier foo =~ "^foo";
38 @@
39 t foo () {...}
40

41 @script:python@
42 x << beginsby.foo;
43 @@
44 print "Begins by foo: %s" % x

and the following C program, on the left, which defines the functions foo, bar, foobar, barfoobar and
barfoo, you will get the result on the right.

1 int foo () { return 0; }
2 int bar () { return 0; }
3 int foobar () { return 0; }
4 int barfoobar () { return 0; }
5 int barfoo () { return 0; }

1 Identifier: foo
2 Identifier: bar
3 Identifier: foobar
4 Identifier: barfoobar
5 Identifier: barfoo
6 Contains foo: foo
7 Contains foo: foobar
8 Contains foo: barfoobar
9 Contains foo: barfoo

10 Ends by foo: foo
11 Ends by foo: barfoo
12 Begins by foo: foo
13 Begins by foo: foobar

23



15 Tips and Tricks
This section presents some tips and tricks for using Coccinelle.

15.1 How to remove useless parentheses?
If you want to rewrite any access to a pointer value by a function call, you may use the following semantic patch.

1 - a = *b
2 + a = readb(b)

However, if for some reason your code looks like bar = *(foo), you will end up with bar = readb((foo))
as the extra parentheses around foo are capture by the metavariable b.

In order to generate better output code, you can use the following semantic patch instead.

1 - a = *(b)
2 + a = readb(b)

And rely on your standard.iso isomorphism file which should contain:

1 Expression
2 @ paren @
3 expression E;
4 @@
5

6 (E) => E

Coccinelle will then consider bar = *(foo) as equivalent to bar = *foo (but not the other way around) and
capture both. Finally, it will generate bar = readb(foo) as expected.

24


	Program
	Metavariables for transformations
	Metavariables for scripts
	Transformation
	Types
	Function declarations
	Declarations
	Statements
	Expressions
	Constants, Identifiers and Types for Transformations
	Comments and preprocessor directives
	Command-line semantic match
	Iteration
	Examples
	Function renaming
	Removing a function argument
	Introduction of a macro
	Look for NULL dereference
	Reference counter: the of_xxx API
	Filtering identifiers, declarers or iterators with regular expressions

	Tips and Tricks
	How to remove useless parentheses?


