How to use the engine in your
applications

By Marti Maria. Ver 2.9

http://www.littlecms.com

Copyright © 2017 Marti Maria Saguer, all rights reserved.

http://www.littlecms.com/

Introduction

Table of Contents
INEFOTUCTION .ttt ettt e s bt e st e e bt e e s bt e e bbe e sabeesabeeesabeesabeesneeesareeesnneenns 4
(D ToTol0 1o T=T o1 =1 o] o [TR P PP 5
What iS NEW FrOM ICMS L.X u.eiiiiiiiiieeeiee ettt ettt ettt e s b e e sne e e sabeesbeeesabeeeneeas 6
Y=o U L= f 10 =T o | £ PP PPPPPPPPPPPPRPRS 7
INCIUAE FIlS .ttt st ettt sttt b e b e s be e saeesaee st e enneens 7
oY= R [ol 6T (o= o 1 £ J PP PPPPPPPPPPPRPRS 8
SOUICE COUE CONVENTIONS . ..eiiiiiieiieesiee ettt ettt e st e st e ettt e sbe e e sabeesbeesbteesbeesbbeesabeesaneeesabeeennneas 8
The CONSE KEYWOIT ...ttt e et e e et e e e st e e e e s abaeeesssbeeeesnsbaeessnseeessnsens 8
2= R To Y/ oY= PPN 9
SEEP-DY-STEP EXAMPIE ...ttt e e e et e e e e e bt e e e e e bte e e s ebteeeeeabaeeeessteeeesntaeaenans 10
(0] oY= o IR a =T o] o] 11 1=T RS 11
Identify the intended format of PIXeISoccuueiiiiiiii e 11
Create the TranSTOMM.. ..o ettt e bt e e st e sabeessbeesabaeenaneas 13
2O oo [T AT oY - o T =T &SRR 13
(711 4172 of [0 o 15
APPIY The tranNSTOIM ..o e e e e e et e e e e e bte e e e abe e e e e eanes 15
Yo 1o 11T =l o F=To Lo 1 o = RSNt 15
Yo Lo 1T TN 1V T o - o T PRSPPI 15
Finishing the color transformooo it e e s aea e e eaes 16
SPECIAI PrOfilE LYPES ceeeieeiiee et e e s e e et e e e et e e e ebteeeesbreeeeann 17
[0 a] oTTe [o 1Yo I o]} 11T OOt 17
DLV oo 111 o o) 17T TP 17
N TagT=To Rolo] o] g o ¢ o] 1] L=T- SRRt 19
2 TUT T I o] o) 1 =TSPt 21
ON-the-flY PrOfileS ...ueeie e e et e e e s bte e e e eatae e e enraeeeeaes 22
Lo To) i1 o - RSP 26
(37 F- o Qo To)T 0l A ele Y0 o Y= g 7= 1 [o S SRPRS 28
Black PreServing INTENTSueiii it e e e e e et e e e e e e e e s b e e e e e e e e e e e nnbaaeeeeaeeeennnes 30

(R T=E T o= (ol P PP P PP PP PPPPPPPPPPPPPPPPPPRt 31

Introduction

(g oY gl oY 411 o T~ SO TP PP PP PPPPPPPPPTOE 32
Getting information from Profiles..........uee i e e 34
TeXtUal INFOrMAtIONcoeiieeee ettt s s bbb e nnees 34
Profile header fieldsooi it s s 35
oY 1[I BT =Tot oY PRSPPIt 36
Profile CapPabilitiEs .oviiiieei it e s e e s s b te e e e sbaeeeeaan 36
0T o [T g Y= = V=L PSP 37
R AT oY < =Y £ 38
The NKed tag fEAtUIE ... e e e e e e e rae e e e eabee e e eeanes 38
Creating NEW ProOfileSuui i e et e e e e e e e e e e e abee e e e nrees 38
TONE CUIVES .ottt e e e e et e e e e e e e s e bbb et e e e e e e s s ababe e e e e e e s s snnrrnenes 39
Pipelines and Multi Processing €le@mMeEnts........coccuiiiiiciiieiiiiiiee ettt vee e e sree e s sbee e s s 41
CIUL @IEMIEBNT ...ttt b e bt sttt et e esbe e she e satesabe e beebeesbeesreesateenneens 42
MAEFIX EIEIMENT ...ttt st sttt e b e s bt e bt e sae e et e et e e nbeesaeesaeeeaee 43
CUNVE SEE RIEMEBNT ...ttt st sttt et e bt e sae e st e s bt et e e beesbeesaeesateenneens 43
Additions and the processing element PIUS-iNcccviiiiiiiei i 43
[L= 1o T=T o 0] Vot d o o 1RSSR 44
(@o] [oTq T4 oI H g [l oF- Lol o] 0 1Y/ =1 5 o s |3 USRI 44
ConVerting €NCOAEMA VAIUEScccuiiiieeieee ettt e et e e e ete e e e et e e e e sata e e e eenseeeeennsaeeesannaeeann 44
Linear Bradford Chromatic Adaptation..........ceeeciiiieeciiiec ettt e et e e e e e aree e e e areas 45
Color difference FUNCLIONS........ui ittt st st ettt et sbe e st eeeeeeens 46
D= B o 4T o ot OO PP PR PRRUPRPRRN 46
Lo Yol g o == 1] - | A o] o [OOSR UP PP PPPPPPPRRNE 48
CIECAIMOD ...ttt ettt ettt et e b e bt b e s he e s et e et e e bt e bt e s eeesasesab e e bt e s eenreesmeesnneenneens 50
L1 2N IR o =1 1= o 53
OVEIVIBW ...ttt ettt et e s st e s et e s e s e et e s e s e e e e s s mn e e e s e nr e e e e snne e e e snneeeesmneeeesnnnneens 53
MeEMOrY MANABEMENTot e e et r e e s e e e e e ta e e e e e eeeeaebaaaeseeesenessnansenaanns 53
7AYo [o 11 oo PSP TPV PRTOPPO 53
SEFICE CGATS .ottt ettt ettt et e st st e bt et e e s b e e s bt e saeesane st e e bt e beenbeesbeesaeeenneenneens 54
(CF Y0 [Vh o ToT0 gTo F= T VAo [Ty ol £ o] 4[] o ISR 55

(000] o Lol U1 1o o IO 56

Introduction | EZA

Introduction

Welcome to the Little Color Management System. With this library you can enable your applications
to use International Color Consortium (ICC) profiles. Little CMS does accept profiles conformant
with ICC 4.3 or below, and supports all features described in the ICC specification. Little CMS can
operate with old V2 ICC profiles as well. The CMM does all necessary adjustments and allows you to
operate and mix both kind of profiles.

This file has been written to present the Little CMS core library to “would-be” writers of applications.
It first describes the concepts on which the engine is based, and then how to use it to obtain
transformations, colorspace conversions and other color-related functionality. This document
doesn't even try to explain the basic concepts of color management. For a comprehensive
explanation, | would recommend the excellent color & gamma FAQs by Charles A. Poynton:

http://www.poynton.com

For more details about profile architecture, you can reach the latest ICC specs on:

http://www.color.org

PLEASE NOTE THAN Little CMS IS NOT AN ICC SUPPORTED LIBRARY

| will assume the reader does have a working knowledge of the C programming language. This
doesn’t mean Little CMS can only be used by C applications, but it seems the easiest way to present
the API functionality. Little CMS 2 is meant to be portable to any C99 compliant compiler.

Introduction

Documentation

Little CMS documentation is hold in three different papers. This one you are reading is the tutorial.
Its goal is to introduce the engine and to guide you in its basic usage. It does not, however, give
details on all available functionality. For that purpose, you can use the API reference, which gives
information on all the constants, structures and functions in the engine. The third document is the
plug-in documentation. It details how to extend the engine to fit your particular purposes. You need
some experience in the core APl to write plug-ins, therefore, the plug-in API reference is somehow
more advanced that the remaining two.

Aside documentation, there are sample programs that you can explore. Those are located in the
“utils” folder. Those programs are also handy in isolation. This is the list of utilities, each one is
documented elsewere.

e TifICC : Color manage tiff files

e JpgICC: Color manage jpeg files

e TranslCC: color calculator, convert numbers across ICC profiles
e LinkICC: link two or more profiles in a single devicelink.

o TiffDiff: utility to get color differences in two similar tiff files

e PsICC: Generate CRD and CSA for PostScript

Introduction [N

What is new from Icms 1.x

First obvious question is “why should | upgrade to Little CMS 2”. Here are some clues:

e Little CMS 2.xx is a full v4 CMM, which can accept v2 profiles. Little CMS 1.xx was a v2
CMM which can deal with (some) V4 profiles. The difference is important, as 2.x handling
of PCS is different, definitively better and far more accurate.

e [t does accept and understand floating point profiles (MPE) with DToBxx tags. (Yes, it
works!) It has 32 bits precision. (Icms 1.xx was 16 bits)

e It handles float and double formats directly. MPE profiles are evaluated in floating point
with no precision loss.

e It has plug-in architecture that allows you to change interpolation, add new proprietary
tags, add new “smart CMM” intents, etc.

e s faster. In some combinations, has a x 6 throughput boost.

e Some new algorithms, incomplete state of adaptation, Jan Morovic’s segment maxima
gamut boundary descriptor, better K preservation...

e Historic issues, like faulty icc34.h, freeing profiles after creating transform, etc. All is
solved.

Little CMS 2 is almost a full rewrite of 1.x series, so there is no guarantee of backwards compatibility.
Having said this, if your application doesn’t make use of advanced features, probably all what you
need to do is to change the include file from Icms.h to Icms2.h and maybe to do some minor tweaks
on your code. Profile opening and transform creation functions are kept the same, but there are
some changes in the flags. Little CMS 2 does offer more ways to access profiles, so it is certainly
possible your code will get simplified. The basic parts where Little CMS 2 differs from 1.x series are:

e Transform flags

e Error handling

e Textual information retrieval
e New non-ICC intents

e Floating point modes

e Pipelines

On internal advanced functions, the underlying implementation has changed significantly. You still
can do all what lcmsl did, but in some cases by using a different approach. There are no longer
gamma curves or matrix-shaper functions. Even the LUT functions are gone. All that has been
superseded by:

e Gamma functions - Tone curves
e Matrix Shaper, LUT = Pipelines
e LUT resampling = Optimization engine

Introduction

There is no one-to-one correspondence between old and new functions, but most old functionality
can be implemented with new functions. Take a look on this document to find how to use the new
API.

Requeriments

In order to improve portability and minimize code complexity, LittleCMS 2.x requires a C99
compliant compiler. This requeriment has been relexed on Microsoft’s Visual Studio because its
wide adoption by industry (VC is not fully C99 compliant). Borland C 5.5 (available for free) has been
tested and found to work Ok. gcc and the Intel compiler does work ok.

Include files

Any application using LittleCMS 2 has to include just one header.

#include “lcms2.h” |

The header has been renamed to lcms2.h in order to improve the adoption of version 2. In fact, both
Little CMS 1.x and 2.x can coexist installed in same machine. This is very important on platforms like
linux, where LittleCMS is nested deep in the dependency tree. Little CMS 2 no longer relies on
icc34.h or any file coming from ICC. All constants are now prefixed by “cms” and there is just one
single license for all the package.

Lcms2.h does expose the API, and only the API. Unlike 1.xx series, all internal functions are no longer
accesible for client applications.

A special case are the LittleCMS plug-ins. Those constructs can access more functions that the AP,
just because they are supposed to access Little CMS internals to add new functionality. There is a
specialized include file for that:

|#include “lcms2 plugin.h” |

This file should only be included when defining plug-ins. It defines some additional functions and is
described in the LittleCMS2.x Plugin APl document.

Introduction AN

Basic Concepts

LittleCMS defines several kinds of structures, that are used to manage the various abstractions
required to access ICC profiles. The main structures are profiles and transforms. In a care of good
encapsulation, these objects are not directly accessible from a client application. Rather, the user
receives a 'handle’ for each object it queries and wants to use. This handle is a stand-alone
reference; it cannot be used like a pointer to access directly the object's data. This approach is used
on other parts of the APl as well, across a generic handle.

There are typedef's for such handles:

e cmsHPROFILE identifies a handle to an open profile.
e cmsHTRANSFORM identifies a handle to a transform.
e cmsHANDLE identifies a generic object.

Source code conventions

e All API functions and types have their label prefixed by 'cms' (lower-case). All plug-in
building aids are prefixed by ‘_cms’ (lower-case).

e Some functions does accepts flags. In such cases, you can build the flags specifier joining
the values with the bitwise-or operator '|".

e Functions does report error by the return code.

e Animportant note is that the engine should not leak memory when returning an error,
e.g., querying the creation of an object will allocate several internal tables that will be
freed if a disk error occurs during a load.

The const keyword

‘const’ is your friend. Since Little CMS 2 requires now €99, | have enforced the use of const whatever
possible. My advice is to hint the compiler with const on all chances of constant objects; it is very
useful to find bugs. So, if the compiler complains on any Little CMS function because a const
parameter, don’t blame the API, revise your code and probably you would find a glitch.

Introduction NN

Basic Types

In order to guarantee portability, lcms2.h does define several base types. If you don’t need your
code to be portable, you can still use ‘int’, ‘long’ etc. But using Little CMS types you make sure about
the representation of the data. Here are the basic types. See the API reference for further details.

Type Bits _Signed Comment

cmsUInt8Number 8 No Byte

cmsInt8Number 8 Yes

cmsUInt16Number 16 No Word

cmsIntl6Number 16 Yes

cmsUInt32Number 32 No Double word

cmsInt32Number 32 Yes Native int on most 32-bit architectures

cmsUInt64Number 64 No

cmsInt64Number 64 Yes

cmsFloat32Number 32 Yes IEEE float

cmsFloat64Number 64 Yes IEEE double

cmsBool ? No TRUE, FALSE Boolean type, which will be using the
native integer

Step-by-step Example

Step-by-step Example

Here is an example to show, step by step, how a client application can transform a bitmap between
two ICC profiles using the Icms API.

#include "lcms2.h"

int main (void)

{
cmsHPROFILE hInProfile, hOutProfile;
cmsHTRANSFORM hTransform;

int i;
hInProfile = cmsOpenProfileFromFile ("HPSJTW.icc", "r");
hOutProfile = cmsOpenProfileFromFile ("sRGBColorSpace.icc", "r");

hTransform = cmsCreateTransform(hInProfile,
TYPE BGR 8,
hOutProfile,
TYPE BGR 8,
INTENT PERCEPTUAL, 0);

cmsCloseProfile (hInProfile) ;
cmsCloseProfile (hOutProfile) ;

for (i=0; 1 < AllScanlinesTilesOrWatseverBlocksYouUse; i++)

{
cmsDoTransform (hTransform, YourInputBuffer,
YourOutputBuffer,
YourBuffersSizeInPixels) ;

}

cmsDeleteTransform (hTransform) ;

return 0;

This is slightly different from the sample on 1.xx series, as Little CMS 2 allows you to close the profiles
after creating the transform. On 1.xx you have to keep profiles open on all transform life, that is no
longer required in Little CMS 2.x

Step-by-step Example

Open the profiles

You will need the profile handles for create the transform. In this example, | will create a transform
using a HP Scan Jet profile as input, and sRGB profile as output. This task can be done by following
lines:

cmsHPROFILE hInProfile, hOutProfile;

hInProfile = cmsOpenProfileFromFile ("HPSJTW.icc", "r")
hOutProfile = cmsOpenProfileFromFile ("sRGBColorSpace.icc", "r")

You surely have noticed a second parameter with a small "r". This parameter is used to set the access
mode. It describes the "opening mode" like the C function fopen(). If the function fails, it return
NULL. In this example we don’t check the return code because simplicity sake, but you should do
that if you care about segfaults!

WARNING! Opening with 'w' WILL OVERWRITE YOUR PROFILE! Don't do
this except if you want to create a NEW profile.

Opening a profile only will take a small fraction of memory. The BToA or AToB tables, which usually
are big, are only loaded at transform-time, and on demand. You can safely open a lot of profiles if
you wish to do so.

Little CMS is a standalone color engine, it knows nothing about where the profiles are placed. It
does assume nothing about a specific directory (as Windows does, currently expects profiles to be
located on SYSTEM32/SPOOL/DRIVERS/COLOR folder in main windows directory), so for get this
example working, you need to copy the profiles in the local directory.

Identify the intended format of pixels

Little CMS can handle a lot of formats:

e 8 and 16 bits per sample

e upto 15 channels

e extra (unused) channels like alpha

e swapped-channels like BGR

e endian-swapped 16 bps formats like PNG
e chunky and planar organization

e Reversed (negative) channels

e Floating-point numbers

Step-by-step Example

For describing such formats, lcms does use a 32-bit value, referred below as "formatters ". This is
just a 32-bit word holding information about the format in bits. Normally, you need not to worry
about how a format pecifier is built. There are several (most usual) encodings predefined as
constants, but there are a lot more. See the API reference for a complete list. Let’s now say that
there are specifiers for many color spaces encoded in 8 bits, in 16 bits and in floating-point. This
latter in 32 or 64 bits per channel. Here are some samples:

TYPE_RGB_DBL TYPE_CMYK_DBL TYPE_Lab_FLT
TYPE_XYZ_FLT TYPE_GRAY_8 TYPE_GRAY_16
TYPE_RGB_8 TYPE_RGB_8_PLANAR | TYPE_BGR_16
TYPE_BGR_16_SE TYPE_RGBA_8 TYPE_CMY_8
TYPE_CMY_16_PLANAR .. etc...

For example, if you are transforming a windows .bmp to a bitmap for display, you will use
TYPE_BGR_8 for both, input and output buffers, windows does store images as B,G,R and not as
R,G,B. Another example, you need to convert from a CMYK separation to RGB in order to display;
then you would use TYPE_CMYK_8 on input and TYPE_BGR_8 on output. If you need to do the
separation from a TIFF, TYPE_RGB 8 on input and TYPE_CMYK 8 on output. Please note
TYPE_RGB_8 and TYPE_BGR_8 are *not* same.

The format specifiers are useful above color management. This will provide a way to handle a lot
of formats, converting them in a single, well-known one. For example, if you need to deal with
several pixel layouts coming from a file (TIFF for example), you can use a fixed output format, say
TYPE_BGR_8 and then, vary the input format on depending on the file parameters. Little CMS also
provides a flag for inhibit color management if you want speed and don't care about profiles. see
cmsFLAGS_NULLTRANSFORM for more info.

Step-by-step Example

Create the transform

When creating transform, you are giving to LittleCMS all information it needs about how to translate
your pixels. The syntax for simple transforms is:

cmsHTRANSFORM hTransform;

hTransform = cmsCreateTransform (hInputProfile,
TYPE BGR 8,
hOutputProfile,
TYPE BGR 8,
INTENT PERCEPTUAL, O0);

You give the profile handles, the format of your buffers, the rendering intent and a combination of
flags controlling the transform behaviour.

Rendering intents

It's out of scope of this document to define the exact meaning of rendering intents. | will try to make
a quick explanation here, but often the meaning of intents depends on the profile manufacturer.

INTENT_PERCEPTUAL:

Hue hopefully maintained (but not required), lightness and saturation sacrificed to
maintain the perceived color. White point changed to result in neutral grays.
Intended for images.

INTENT_RELATIVE_COLORIMETRIC:

Within and outside gamut; same as Absolute Colorimetric. White point changed to
result in neutral grays.

INTENT_SATURATION:

Hue and saturation maintained with lightnesssacrificed to maintain saturation.
White point changed to result in neutral grays. Intended for business graphics
(make it colorful charts, graphs, overheads, ...)

INTENT_ABSOLUTE_COLORIMETRIC:

Within the destination device gamut; hue, lightness and saturation are maintained.
Outside the gamut; hue and lightness are maintained, saturation is sacrificed. White
point for source and destination; unchanged. Intended for spot colors (Pantone,
TruMatch, logo colors, ...)

Step-by-step Example

With Little CMS 2 there are additional intents. Those does not belong to the ICC spec, and therefore
they are labeled as “user” intents. In fact, by using plug-ins you can extend the list of available
intents.

LittleCMS 2.1 does add following non-ICC intents by default:

e INTENT_PRESERVE_K_ONLY_PERCEPTUAL

e INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC
e INTENT_PRESERVE_K_ONLY_SATURATION

e INTENT_PRESERVE_K_PLANE_PERCEPTUAL

e INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC
e INTENT_PRESERVE_K_PLANE_SATURATION

All those new intents deal with black preservation. They are described below, see the black
preservation section.

Not all profiles does support all intents, there is a function for inquiring which intents are really
supported for a given profile, but if you specify a intent that the profile doesn't handle, Little CMS
will select default intent instead.

This is the algorithm for selecting ICC intents:

INTENT PERCEPTUAL:

If adequate table is present in profile,
then, it is used. Else default intent of profiles is used

INTENT RELATIVE COLORIMETRIC:
If adequate table is present in profile,
then, it is used. Else revert to perceptual
intent.

INTENT SATURATION:
If adequate table is present in profile,
then, it is used. Else revert to perceptual
intent.

INTENT ABSOLUTE COLORIMETRIC:

relative colorimetric intent is used
with undoing of chromatic adaptation.

Step-by-step Example

Optimization

Little CMS tries to optimize profile chains whatever possible. There are some built-in optimization
schemes, and you can add new schemas by using a plug-in. This generally improves the performance
of the transform, but may introduce a small delay of 1-2 seconds when creating the transform. If
you are going to transform just few colors, you don't need this precalculations. Then, the flag
cmsFLAGS_NOOPTIMIZE in cmsCreateTransform() can be used to inhibit the optimization process.
See the API reference for a more detailed discussion of the flags.

Apply the transform

Next, you can translate your bitmap, calling repeatedly the processing function:

cmsDoTransform (hTransform, YourInputBuffer,
YourOutputBuffer,
YourBuffersSize) ;

This function is intended to be quite fast. You can use this function for translating a scan line, a tile,
a strip, or whole image at time.

Scanline padding

Windows, stores the bitmaps in a particular way... for speed purposes, does align the scan lines to
double word boundaries, a bitmap has in windows always a size multiple of 4. This is OK, since no
matter if you waste a couple of bytes, but if you call cmsDoTransform() and passes it WHOLE image,
Little CMS doesn't know nothing about this extra padding bytes. It assumes that you are passing a
block of BGR triplets with no alignment at all. This result in a strange looking "lines" in obtained
bitmap. The solution most evident is to convert scan line by scan line instead of whole image. This
is as easy as to add a for() loop, and the time penalty is so low that is impossible to detect.

Scanline overlap

It is safe to use same block for input and output, but only if the input and output are coded in same
format. For example, you can safely use only one buffer for RGB to RGB but you cannot use same
buffer for RGB as input and CMYK as output.

Step-by-step Example

Finishing the color transform

New with Little CMS 2 is the ability to free profiles just after creating the transform. A open profile
may take big amounts of memory, so it is a good idea to free the resources as soon as you don’t
need them. Color transforms does take also resources, so you have to free them to avoid leaks.

This can be done by calling:

cmsDeleteTransform (hTransform) ;
cmsCloseProfile (hInputProfile) ;
cmsCloseProfile (hOutputProfile) ;

Note that cmsDeleteTransform() does NOT automatically free associated profiles. This works in such
way to let programmers to use a open profile in more than one transform.

Special profile types

Special profile types

Aside the normal, file-based profiles, there are a number of situations where you may want
something different. Here are listed such special cases.

Embedded profiles

Some image file formats, like TIFF, JPEG or PNG, does include the ability of embed profiles. This
means that the input profile for the bitmap is stored inside the image file. LittleCMS provides a
specialised profile-opening function for deal with such profiles.

cmsHPROFILE cmsOpenProfileFromMem (const void * MemPtr,
cmsUInt32Number dwSize) ;

This function works like cmsOpenProfileFromFile(), but assuming that you are given full profile in a
memory block rather than a filename. Here there is no "r", since these profiles are always read-only.
A successful call will return a handle to an opened profile that behaves just like any other file-based.

NULL if the function fails.

Memory based profiles does not waste more resources than memory, so you can have tons of
profiles opened sumultaneously by using this function. Once opened, you can safely FREE the
memory block. Little CMS keeps a temporary copy. You can retrieve information of this profile, but
generally these are minimal shaper-matrix profiles with little if none handy info present.

Be also warned that you may find WRONG profiles embedded, i.e., profiles marked as using different
colorspace that one the profile really manages. Little CMS is NOT likely to understand these profiles
since they will be wrong at all.

Device-link profiles

Device-link profiles are "smelted" profiles that represents a whole transform rather than single-
device profiles. In theory, device-link profiles may have greater precision that input/output chains
and are faster to load. If you plan to use device-link profiles, be warned there are drawbacks about
its inter-operability and the gain of speed is almost null. Perhaps their only advantage is when
restoration from CMYK with great precision is required, since CMYK to pcs CLUTs can become very,
very big.

Special profile types

For creating a device-link transform, you may open the device link profile as usual, using
cmsOpenProfileFromFile(). Then, create the transform with cmsCreateMultiprofileTransform.

hDevicelink = cmsOpenProfileFromFile ("MYDEVLINK.icc", "x");

hTransform = cmsCreateMultiprofileTransform(&hDevicelink,
1,
TYPE RGB 8,
TYPE BGR 8,
INTENT_PERCEPTUAL,
0);

That's all. LittleCMS will understand and transparently handle the device-link profile. Note the first
parameter is an array of handles, so you can use ‘&’ in this particular case. Another option is to use
the device link profile as input and the output profile parameter equal to NULL:

hDevicelLink = cmsOpenProfileFromFile ("MYDEVLINK.icc", "r");

hTransform = cmsCreateTransform(hDeviceLink, TYPE RGB 8,
NULL, TYPE BGR 8,
INTENT PERCEPTUAL,
0);

There is also a function for dumping a transform into a devicelink profile.

cmsHPROFILE cmsTransform2DevicelLink (cmsHTRANSFORM hTransform,
cmsFloat64Number Version,
cmsUInt32Number dwFlags) ;

This profile can be used in any other transform or saved to disk/memory. Note that you must specify
the version number. That is required because v4 profiles may be implemented in a quite different
way of v2. Settinng proper version number will assure you compatibility with other software. 4.2 is
the latest ICC revision. 3.4 will assure compatibility with old software.

If you want to save information on which profiles has been used in the transform, you must include
the special flag cmsFLAGS_KEEP_SEQUENCE when creating the transform. This is done in such way
because the original profiles may hold multi localized descriptions, and the total memory may be
very big. Unless you need to create strictly compliant device links, you need not this flag.

Special profile types

Named color profiles

Named color profiles are a special kind of profiles handling
lists of spot colors. The typical example is PANTONE®.
LittleCMS deals with named color profiles like all other
types, except they must be in input stage and the encoding
supported is limited to a one single channel of 16-bit that
works as an index to the table.

Little CMS has no affiliation with PANTONE Company. PANTONE® is a trademark of
Pantone, Inc. PANTONE Color identification is solely for artistic purposes and not
intended to be used for specification.

Let's assume we have a Named color profile holding only 4 colors:

e CYAN

e MAGENTA
e YELLOW

e BLACK

We create a transform using:

hTransform = cmsCreateTransform (hNamedColorProfile,
TYPE NAMED COLOR INDEX,
hOutputProfile,
TYPE BGR 8,
INTENT PERCEPTUAL, 0);

TYPE_NAMED_COLOR_INDEX is a special encoding for these profiles, it represents a single
channel holding the spot color index. In our case value 0 will be "CYAN", value 1 "MAGENTA" and
so one. For converting between string and index, you have to retrieve the list by using

cmsNAMEDCOLORLIST* cmsGetNamedColorList (cmsHTRANSFORM xform) ;

Then there are several function to deal with such lists. For example, there is an auxiliary function:

cmsInt32Number cmsNamedColorIndex (const cmsNAMEDCOLORLIST* v,
const char* Name) ;

Special profile types

That will perform a look up on the spot colors database and return the color number or -1 if the
color was not found. Other additional functions for named color transforms are:

cmsUInt32Number cmsNamedColorCount (const cmsNAMEDCOLORLIST* v) ;

That returns the number of colors present on transform database.

cmsBool cmsNamedColorInfo (const cmsNAMEDCOLORLIST* NamedColorList,
cmsUInt32Number nColor,
char* Name,
char* Prefix,
char* Suffix,
cmsUIntl6oNumber* PCS,
cmsUIntl6Number* Colorant) ;

That returns extended information about a given color. Named color profiles does hold two
coordinates for each color, let's take our PANTONE example. This profile would contain for each
color the CMYK colorants plus its PCS coordinates, usually in Lab space. LittleCMS can work with
named color using both coordinates. Creating a transform with two profiles, if the input one is a
named color, then you obtain the translated color using PCS.

Example, named color = sRGB will give the color patches in SRGB

On the other hand, creating a multiprofile transform with only one named color profile returns the
device coordinates, that is, CMYK colorants in our PANTONE sample.

Example: Named color will give the CMYK amount for each spot color.

So, you can use a named color profile in two different ways, as output, giving the index and getting
the CMYK values or as input and getting the Lab for that color.

e A transform which involves only one named color profile will give the CMYK values for the
spot color on the printer the profile is describing. This would be the normal usage.

e Atransform Named color -> another printer will give on the output printer the spot a color
as if they were printed in the printer named color profile is describing. This is useful for soft
proofing.

Special profile types

Built-in profiles

There are several built-in profiles that programmer can use without the need of any disk file.
These does include:

e sRGB profile

e L*a*b profiles

o XYZ profile

e Gray profiles

e RGB matrix-shaper.

e Linearization device link
e Ink-Limiting device link
e Adjust device link.

e NULL profile

Many of there are very useful for tricking & trapping. For example, creating a transform from sRGB
to Lab could be done without any disk file.

Something like:

hsRGB = cmsCreate sRGBProfile();
hlLab = cmsCreatelab4Profile ()

xform = cmsCreateTransform (hSRGB, TYPE RGB DBL, hLab,
TYPE Lab DBL,
INTENT PERCEPTUAL, O0);

Then you can convert directly form double sRGB values (in 0..1.0 range) to Lab by using:

double RGB[3];
cmsCIELab Lab;

RGB[0O] = 0.1; RGB[1] = 0.2 RGB[2] = 0.3;
cmsDoTransform (xform, RGB, &Lab, 1);

get result on "Lab" variable

The NULL profile returns zero for any input color. This is useful for out-of-gamut warning. If you
need to know which pixels are out of gamut, but want only zeros or ones as result, you can use the
NULL profile as output and turn on the gamut warning feature.

Special profile types

Some of those built-ins does accept parameters. That means, the built in primitive does not generate
a unique profile but families of profiles with same functionality. | will call that “on the fly” profiles.
You can create your own RGB or Gray input profiles "on the fly". See next section on how to do that.

On-the-fly profiles

There are several situations where it will be useful to build a minimal profile using adjusts only
available at run time. Surely you have seen the classical pattern-gray trick for adjusting gamma: the
end user moves a scroll bar and when pattern seems to match background gray, then gamma is
adjusted. Another trick is to use a black background with some gray rectangles. The user chooses
the most neutral grey, giving the white point or the temperature in °K. All these visual gadgets are
not part of LittleCMS, you must implement them by yourself if you like. But LittleCMS will help you
with a function for generating a virtual profile based on the results of these tests.

Another usage would be to build colorimetric descriptors for file images that does not include any
embedded profile, but does include fields for identifying original colorspace.

One example is TIFF files. The TIFF 6.0 spec talks about "RGB Image Colorimetry" (See section 20) a
"colorimetric" TIFF image has all needed parameters (WhitePointTag=318,
PrimaryChromacitiesTag=318, TransferFunction=301, TransferRange=342)

Obtain a emulated profile from such files is easy since the contents of these tags does match the
cmsCreateRGBProfile() parameters. Also PNG can come with information for build a virtual profile,
See the gAMA and cHRM chunks.

Special profile types

RGB virtual profiles

This is the main function for creating virtual RGB profiles:

cmsHPROFILE cmsCreateRGBProfile (const cmsCIExyY* WhitePoint,
const cmsCIExyYTRIPLE* Primaries,
cmsToneCurve* const TransferFunction[3]);

It takes as arguments the white point, the primaries and 3 tone curves. The profile emulated is
always operating in RGB space. Once created, a handle to a profile is returned. This opened profile
behaves like any other file or memory based profile. Virtual RGB profiles are implemented as
matrix-shaper, so they cannot compete against CLUT based ones, but generally are good enough
to provide a reasonable alternative to generic profiles. To simplify the parameters construction,
there are additional functions, for example:

cmsBool cmsWhitePointFromTemp (cmsCIExyY* WhitePoint,
cmsFloat64Number TempK) ;

This function computes the xyY chromacity of white point using the temperature. Screen
manufacturers often includes a white point hard switch in monitors, but they refer as
"Temperature" instead of chromacity. Most extended temperatures are 5000K, 6500K and 9300K.

It returns TRUE if a valid white point can be computed, or FALSE if the temperature were non valid.
You must give a pointer to a cmsCIExyY struct for holding resulting white point. For primaries,
currently I don't know any trick or proof for identifying primaries, so here are a few chromacities of
most extended. Y is always 1.0

RED GREEN BLUE
X v X y X Y
NTSC 0.7, 0.33, 0.21, 0.71, 0.14, 0.08
EBU (PAL/SECAM) 0.04, 0.33, 0.29, 0.60, 0.15, 0.06
SMPTE 0.630, 0.340, 0.310, 0.595, 0.155, 0.070
HDTV 0.670, 0.330, 0.210, 0.710, 0.150, 0.060
CIE 0.7355,0.2645,0.2658,0.7243,0.1669,0.0085

These are TRUE primaries, not colorants. Little CMS does include a white-point balancing and a
chromatic adaptation using a method called Bradford Transform for D50 adaptation.

The tone curves can be generated by any tone curve creation function. The simplest one is
cmsBuildGamma, which creates a pure-exponential function like CRT gamma. See the tone curves
section for more information on how to create such curves.

Special profile types

Gray virtual profiles

Another kind of profiles that can be built on runtime are gray scale profiles. This can be
accomplished by the function:

cmsHPROFILE cmsCreateGrayProfile (const cmsCIExyY* WhitePoint,
const cmsToneCurve* TransferFunction);

This one is somehow easier, since it only takes one curve (the transfer function) and the media white
point. Of course gray scale does not need primaries, since they are monochrome. The primary here
is the white point itself.

Linearization device links

This is a very handy type of virtual profiles. It may be use for several things, like linearizing printers
or applying curves to RGB images. They basically apply a transform that is channel-independent.
That is, each channel response is independent of the rest of channels. That may be understood as
applying curves to each channel, but the response can be tabulated and is not restricted to curves.

cmsHPROFILE cmsCreatelinearizationDeviceLink (
cmsColorSpaceSignature ColorSpace,
cmsToneCurve* const TransferFunctions([]):;

You need to specify the color space the profile is operating, which must be the same on input and
output, and the tone curves to apply to each channel. The number of channels is implicit in the
color space.

Ink limiting device links

Intended mainly for CMYK. It uses the hypercube algorithm. Works on CMYK - CMYK, and the
parameter specifies the total amount of ink in %. Black ink is never reduced, CMY are reduced
proportionally to meet the limits.

cmsHPROFILE cmsCreateInkLimitingDeviceLink (
cmsColorSpaceSignature ColorSpace,
cmsFloat64Number Limit) ;

The Color Space parameter is provided for future extensions. Currently it only supports CMYK.

Special profile types

Bright, Contrast, Hue, Saturation and white point.

Provided for compatibility with previous versions. With this function you can adjust Brightness,
Contrast, Hue and Saturation in a color transform. Additionally you can modify the color
temperature. It mimics the controls found on most monitors. Operates on L"a’b” = L*a’b’, so this
profile should be inserted into input and output profiles.

cmsHPROFILE cmsCreateBCHSWabstractProfile (int nLUTPoints,
cmsFloat64Number Bright,
cmsFloat64Number Contrast,
cmsFloat64Number Hue,
cmsFloat64Number Saturation,
int TempSrc,
int TempDest) ;

Ranges are:

Bright: O=no op, < 0 decrease, > 0 increase
Contrast: 1=no op, < 1 decrease, > 1 increase
Saturation: 0=no op, < 0 decrease, > 1 increase
Hue: 0=no op, up to 3609, hue displacement

Proofing

Proofing

An additional ability of Little CMS is to
create "proofing" transforms.

_ProFhoto RGB

A proofing transform can emulate the P eee s

colors that would appear as the image SRGB

-

were rendered on a specific device. That 2200 Matt Paper
is, for example, with a proofing
transform | can see how will look a photo
of my little daughter if rendered on my
HP printer. Since most printer profiles
does include some sort of gamut-
remapping, it is likely colors will not look
as the original. Using a proofing
transform, it can be done by using the
appropriate function. Note that this is an
important feature for final users, it is

\
Horseshoe Shape of Visible Color

worth of all color-management stuff if
the final media is not cheap.

The creation of a proofing transform involves three profiles, the input and output ones as
cmsCreateTransform() plus another, representing the emulated profile.

cmsHTRANSFORM cmsCreateProofingTransform (cmsHPROFILE Input,
cmsUInt32Number InputFormat,
cmsHPROFILE Output,
cmsUInt32Number OutputFormat,
cmsHPROFILE Proofing,
cmsUInt32Number Intent,
cmsUInt32Number ProofingIntent,
cmsUInt32Number dwFlags) ;

Also, there is another parameter for specifying the intent for the proof. The Intent here represents
the intent the user will select when printing, and the proofing intent represent the intent system is
using for showing the proofed color. Since some printers can archive colors that displays cannot
render (darker ones) some gamut-remapping must be done to accommodate such colors. Normally
INTENT_ABSOLUTE_COLORIMETRIC is to be used: it is likely the user wants to see the exact colors
on screen, cutting off these unrepresentable colors.

INTENT_RELATIVE_COLORIMETRIC could serve as well.

Proofing

Proofing transforms can also be used to show the colors that are out of the printer gamut. You can
activate this feature by using the cmsFLAGS_GAMUTCHECK flag in dwFlags field.

Then, the function:

void cmsSetAlarmCodes (cmsUIntloNumber NewAlarm[cmsMAXCHANNELS]) ;

Can be used to define the out-of-gamut marker. Range is 0..0xffff

For activating the preview or gamut check features, you MUST include the corresponding flags

cmsFLAGS S