ElementwiseProduct¶
-
class
pyspark.ml.feature.ElementwiseProduct(*, scalingVec=None, inputCol=None, outputCol=None)[source]¶ Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided “weight” vector. In other words, it scales each column of the dataset by a scalar multiplier.
New in version 1.5.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([2.0, 1.0, 3.0]),)], ["values"]) >>> ep = ElementwiseProduct() >>> ep.setScalingVec(Vectors.dense([1.0, 2.0, 3.0])) ElementwiseProduct... >>> ep.setInputCol("values") ElementwiseProduct... >>> ep.setOutputCol("eprod") ElementwiseProduct... >>> ep.transform(df).head().eprod DenseVector([2.0, 2.0, 9.0]) >>> ep.setParams(scalingVec=Vectors.dense([2.0, 3.0, 5.0])).transform(df).head().eprod DenseVector([4.0, 3.0, 15.0]) >>> elementwiseProductPath = temp_path + "/elementwise-product" >>> ep.save(elementwiseProductPath) >>> loadedEp = ElementwiseProduct.load(elementwiseProductPath) >>> loadedEp.getScalingVec() == ep.getScalingVec() True >>> loadedEp.transform(df).take(1) == ep.transform(df).take(1) True
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of inputCol or its default value.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam(paramName)Gets a param by its name.
Gets the value of scalingVec or its default value.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
setInputCol(value)Sets the value of
inputCol.setOutputCol(value)Sets the value of
outputCol.setParams(self, \*[, scalingVec, inputCol, …])Sets params for this ElementwiseProduct.
setScalingVec(value)Sets the value of
scalingVec.transform(dataset[, params])Transforms the input dataset with optional parameters.
write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
-
clear(param)¶ Clears a param from the param map if it has been explicitly set.
-
copy(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParamsCopy of this instance
-
explainParam(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getInputCol()¶ Gets the value of inputCol or its default value.
-
getOrDefault(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getOutputCol()¶ Gets the value of outputCol or its default value.
-
getParam(paramName)¶ Gets a param by its name.
-
hasDefault(param)¶ Checks whether a param has a default value.
-
hasParam(paramName)¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined(param)¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet(param)¶ Checks whether a param is explicitly set by user.
-
classmethod
load(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read()¶ Returns an MLReader instance for this class.
-
save(path)¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set(param, value)¶ Sets a parameter in the embedded param map.
-
setParams(self, \*, scalingVec=None, inputCol=None, outputCol=None)[source]¶ Sets params for this ElementwiseProduct.
New in version 1.5.0.
-
setScalingVec(value)[source]¶ Sets the value of
scalingVec.New in version 2.0.0.
-
transform(dataset, params=None)¶ Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrametransformed dataset
-
write()¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
-
scalingVec= Param(parent='undefined', name='scalingVec', doc='Vector for hadamard product.')¶
-