Open Source
Development

with
CVS

3RrD EDITION

Moshe Bar
Karl Fogel

SSSSS

Open Source Development with CVS, 3rp EbiTioN
Copyright © 2003 Karl Fogel and Paraglyph Press.

You can redistribute and/or modify this book under the terms of
the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at
your option)any later version.

This book is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public

License for more details.

You should have received a copy of the GNU General Public
License along with this book; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Paraglyph Press, Inc.
4015 N. 78 Street, #115
Scottsdale, Arizona 85251
Phone: 602-749-8787

www.paraglyphpress.com

Paraglyph Press ISBN: 1-932111-81-6

Printed in the United States of America
10 9 87 6 5 4 3 21

PARAGLYPH

P RESS

President
Keith Weiskamp

Editor-at-Large
Jeff Duntemann

Vice President, Sales,
Marketing, and
Distribution

Steve Sayre

Vice President, International
Sales and Marketing
Cynthia Caldwell

Production Manager
Kim Eoff

Cover Designer
Kiris Sotelo

The Paraglyph Mission

This book you've purchased is a collaborative creation involving the work of many
hands, from authors to editors to designers and to technical reviewers. At Paraglyph
Press, we like to think that everything we create, develop, and publish is the result of
one form creating another. And as this cycle continues on, we believe that your sug-
gestions, ideas, feedback, and comments on how you've used our books is an important
part of the process for us and our authors.

We’ve created Paraglyph Press with the sole mission of producing and publishing
books that make a difference. The last thing we all need is yet another tech book
on the same tired, old topic. So we ask our authors and all of the many creative
hands who touch our publications to do a little extra, dig a little deeper, think a
little harder, and create a better book. The founders of Paraglyph are dedicated to
finding the best authors, developing the best books, and helping you find the
solutions you need.

As you use this book, please take a moment to drop us a line at
feedback@paraglyphpress.com and let us know how we are doing—and how we
can keep producing and publishing the kinds of books that you can’t live without.

Sincerely,

Keith Weiskamp & Jeff Duntemann
Paraglyph Press Founders

4015 N. 78% Street, #115

Scottsdale, Arizona 85251

email: feedback@paraglyphpress.com
Web: www.paraglyphpress.com

Phone: 602-749-8787

Recently Published by Paraglyph Press:

Jeff Duntemann’s Drive-By Wi-Fi Guide
By Jeff Duntemann

Visual Basic .NET Black Book
By Steven Holzner

C++ Black Book
By Steven Holzner

C# Core Language Little Black Book
By Bill Wagner

The SQL Server 2000 Book

By Anthony Sequeira
And Brian Alderman

The Mac OS X.2 Power User's Book
By Gene Steinberg and Pieter Paulson

Mac OS X v.2 Jaguar Little Black Book
By Gene Steinberg

The Mac OS X.2 Jaguar Book
By Mark R. Bell

Game Coding Complete
By Mike McShaffry

Monster Gaming
By Ben Sawyer

Looking Good in Print, 5th Edition
By Roger C. Parker

To Yisrael—The Land, the People, and its Torah
—Moshe Bar

2 9

This book is dedicated with love to my parents, Frances and Henry, for everything. Literally.
—Karl Fogel
Y

About the Authors

Moshe Bar, has an M.Sc. and Ph.D. in computer science and teaches
advanced operating systems courses at Tel Aviv University and some
European universities. Over the last ten years he has contributed to
several open source projects, such as the Linux kernel, the JES file
system for Linux, and most prominent, openMosix. He has authored
books on the Linux kernel and its file systems. Moshe is also Chief
Technology Officer and co-founder of Qlusters, Inc., a clustering soft-
ware company in the Silicon Valley.

Next to programming, Moshe also works as senior editor for BYTE
Magazine as well as for several other computer journals. Whenever he
is not working, Moshe can be spotted on one of his custom motor-
cycles. Currently, he enjoys his brand-new Harley-Davidson Road King,
next to his Yamaha RoadStar Classic 1100.

Karl Fogel was born in 1971 and managed to make it all the way through
the ’80s personal computer and BBS craze without learning a thing
about computers, networks, or email. In this state of technological ig-
norance—which he has been trying ever since to regain—he headed
off to Oberlin College/Conservatory of Music in 1991 to study the pi-
ano, but ended up with a degree in Chinese and an accidental education
in computer programming.

In 1995 he and Jim Blandy started Cyclic Software, to provide mainte-
nance and commercial support for CVS. After they sold Cyclic, he
headed to southwest China and taught English and Unix/C program-
ming for a year. He now lives in Chicago, working as a free software
programmer for CollabNet on the Subversion project, a new revision
control system intended to succeed CVS.

In his copious spare time, he is careful to avoid any contact with com-
puters; instead, he interacts with live human beings and plays the piano.

Acknowledgments

The writing of this book, as for every book written, took a toll on
social and family life. Avivit always showed patience when the book
took first priority on many weekends and evenings. Thank you.

Finally, I need to thank the people who made me learn how to use
CVS for my daily development and sysadmin work: the good folks
at SAP Portals, Baan Development, and last but not least, the fan-
tastic world of open source where I learned—and still continue to
learn—the dynamics of contribution and open source project man-
agement.

[feel I am living in a very special time and | am very glad to be one
of OpenSource’s participants. Next to the obvious stars like Linus
Torvalds, Jordan Hubbard, and others, a great deal of other, lesser
known, but equally important programmers make OpenSource the
economic power that it is today. My appreciation goes to these
lesser known contributors in the same measure as for the well-
known stars.

—Moshe Bar

Contents at a Glance

Chapter T Why Open Source Development and
CVS Go Together 1

Chapter 2 An Overview of CVS 17

Chapter 3 CVS Repository Administration 87

Chapter 4 Advanced CVS 125

Chapter 5 Tips and Troubleshooting 171

Chapter 6 The Devlopment Process 187

Chapter 7 The Open Source Process 203

Chapter 8 Designing for Decentralized Development 225

Chapter 9 Third-Party Tools that Work with CVS 239
Chapter 10 Complete CVS Reference 255
Chapter 11 CVS versus BitKeeper—A Comparison 307
Appendix A GNU General Public License 315
Appendix B GNU Free Documentation License 323
Appendix C Bibliography 331

Contents

INErOAUCTION e e XVii

Chapter T Why Open Source Development and

CVS Go Togetherccccooiiiiiiiiiniin 1
What Is Free Software? 1

Open Source Software 2

Open Source Licenses 3

Open Source Business Models 4
How It All Started 5

Stallman’s Idea 5

The Two Types of Development 6
What Does CVS Have to Do with It? 7

diff and patch 8

RCS 9

The Winner: CVS 9
Principles of Open Source Development and How CVS Helps 10
What Makes It All Tick? 12

Necessity 12

Community 12

Glory 13

Money 13

Factionalism as a Sign of Strength 14

Chapter 2 An Overview of CVSooooiiiiiiiiiiiiieiee. 17
CVS Basics 17
What CVS Is Not: The Lock-Modify-Unlock Model 18
What CVS Is: The Copy-Modify-Merge Model 18
Other Revision Control Systems 21
BitKeeper 21
BitKeeper License 22
Microsoft VSS = 23
RCS and GNU/RCS 24
SCCS 24

xi

xii

Contents

Chapter 3

A Tour of CVS 25
Invoking CVS 27
Repository Access and the Working Environment 27
Starting a New Project 30
Checking Out a Working Copy 32
Making a Change 35
Finding Out What You (and Others) Did: update and diff 35
CVS and Implied Arguments 40
Committing 43
Finding Out Who Did What (Browsing Log Messages) 51
Examining and Reverting Changes 54
Other Useful CVS Commands 58
Adding Files 58
Adding Directories 59
Removing Files 59
Removing Directories 61
Renaming Files and Directories 61
Avoiding Option Fatigue 63
Getting Snapshots (Dates and Tagging) 63
Acceptable Date Formats 67
Marking a Moment in Time (Tags) 67
Branches 73
Merging Changes from Branch to Trunk 80
Multiple Merges 82
Creating a Tag or Branch without a Working Copy 85

CVS Repository Administrationc.c.......... 87
The Administrator’s Role 87
Getting and Installing CVS 87
Building CVS from Source 88
Getting and Installing CVS under Windows 91
Getting and Installing CVS on a Macintosh 92
Limitations of the Windows and Macintosh Versions 92
Anatomy of a CVS Distribution 92
Informational Files 92
Subdirectories 94
Other Sources of Information 96
Starting a Repository 97
The Password-Authenticating Server 99
Repository Structure Explained in Detail 104
RCS Format Always Quotes @ Signs 110
What Happens When You Remove a File 112

Chapter 4

Chapter 5

Chapter 6

Contents

The CVSROOT/ Administrative Directory 113
Finding Out More 124

Advanced CVSoooiiiieeiiiiiiiieeee e, 125
Beyond the Basics 125
CVS as a Communication Device 125
Watches: Knowing Who’s Working on What, When 125
Log Messages and Commit Emails 139
Getting Rid of a Working Copy 141
A Bird’s-Eye View of Project History 142
Bird’s-Eye View, with Telescope: The annotate Command 145
Using Keyword Expansion 150
Going out on a Limb: How to Work with Branches and Survive 152
Merging Repeatedly into the Trunk 153
The Dovetail Approach: Merging in and out of the Trunk 160
The Flying Fish Approach: A Simpler Way 162
Tracking Third-Party Sources: Vendor Branches 164
New CVS Features 168
You Are Now a Guru! 169

Tips and Troubleshooting.........cc.cccccceviiennne. 171
What to Do When Things Go Wrong 171
The Usual Suspects 172
The Working Copy Administrative Area 172
Repository Permissions 174
Common Problems and How to Solve Them 175
Some Real-Life Problems, with Solutions 176
Things Change 186

The Development Processccccoeuueee.e. 187
What Good Are Releases? 187
Starting the Release Process 188
Avoiding the “Code Cram” Effect 189
Freezing 190
Development vs. Stable Branches 191
Testing 192
Recruiting and Retaining Testers 193
Automated Testing 193
Building, Installing, and Packaging 194
Building and Installing: make and autoconf 194
Let CVS Help You with Packaging 197
Releasing 199
Telling the World about Changes 200

xiii

xiv Contents

Chapter 7

Chapter 8

Chapter 9

Recording the Release in CVS: Tags and Revision Numbers
Finding Out More 201

The Open Source Process.........cccceeeevuneee.

Failure and Success 203

Starting a Project 204
Release Something Useful 206
Packaging 209
Announcing the Program 212

Running a Project 212
Cultivating Technical Judgment 215
So, Who Is the Maintainer, Really? 217
Rule by Committee 218
How to Do a Fork, if You Absolutely Must 220
Changing Maintainers 222
Stasis 223

Knowing What We Don’t Know 223

Designing for Decentralized

Developmentcoovvieeiniiiiiniiicinieccne.

The Importance of Software Design 225
Proprietary Software Design vs.
Free Software Design 226

Cost Issues 227

Design Invariants 228

Code Design 229
The Design Document 229
Dividing Code into Files and Directories 230
Dividing Code into Modules 231

Evolution-Centered Design 233

Principles of Free Software Design 234
Don’t Limit Input 235
Use a Consistent Interface 235
Document Data Structures 236
Make It Portable 237

When in Doubt, Abstain 238

Third-Party Tools that Work with CVS

What Are Third-Party Tools? 239

200

Chapter 10

Contents

pcl-cvs: An Emacs Interface to CVS 239
Installing pcl-cvs 240
Using pcl-cvs 242
Error Handling in pcl-cvs 243
cvsutils: General Utilities for Use with CVS 243
Cervisia 244
cvsu 244
cvsdo 245
cvschroot 246
cvsrmadm 246
cvspurge 246
cvsdiscard 246
cvsco 247
cvs2cl.pl: Generate GNU-Style ChangeLogs from CVS Logs 247
-h, --help 248
-r, --revisions 248
-t, --tags 248
-b, --branches 248
-g OPTS, --global-opts OPTS 248
-1 OPTS, --log-opts OPTS 249
-d, --distributed 249
cvslock: Lock Repositories for Atomicity 249
Other Packages 251
Jalindi Igloo 251
CVSUp (Part of the FreeBSD Project) 252
CVSWeb: A Web Interface to CVS Repositories 252
The CVS contrib/ Directory 252
Weriting Your Own Tools 252

Complete CVS Referenceccccccevveenunneene. 255
Organization and Conventions 255
Commands 255
General Patterns in CVS Commands 256
Global Options 257
List of Commands 261
Keyword Substitution (RCS Keywords) 291
Controlling Keyword Expansion 291
List of Keywords 292
Repository Administrative Files 294
Shared Syntax 294

XV

xvi

Contents

Chapter 11

Appendix A
Appendix B
Appendix C

Index

List of Repository Administrative Files 295
Run Control Files 301
Working Copy Files 302
Environment Variables 304

CVS versus BitKeeper—A Comparison 307
A Sample BitKeeper Session 308
A Comparison of CVS and BitKeeper 309

Comparing Commands and Syntax 310

GNU General Public License. 315
GNU Free Documentation License............... 323
Bibliographycoooiiiiiiiie, 331
.. 333

CVS Quick Commands...........ceueveueeiiiiiiiiiiiiiiiiiiieieieeeeeeeee. 343

Introduction

H ardly a day goes by that you don’t make use of open source
software, even though sometimes you’re unaware of it. Each
time you receive an email from your spouse, friend or colleague,
there’s an almost 80 percent chance that it got to you through a
classic piece of open source software: Sendmail.

If you look at a Web page, about 65 percent of the time, that
page is being served by an open source Web server. In fact, most
if not all open source applications are usually written with the
help of open source tools like emacs (the venerable user environ-
ment and program editor), gcc, the official GNU C compiler,
and debugged with gdb, the GNU debugger. Best of all, the source
code of those applications and many others are maintained by
one utility dutifully storing it all and keeping care of the ever-
changing versions: CVS.

Open source software, in other words, has become a power player
in the market and in some areas (like those mentioned above)
even dominates it. And CVS is the very foundation of the open
source movement, serving as the repository for the developers
and for the end users. Often, these end users are no different at
all from the developers, because in the open source world, the
quality assurance is done by the them and then they contribute
bug fixes back to the community. Therefore, a source code re-
pository and version control system like CVS has to be quite a
flexible tool, providing a stable and reliable front end to the open
source community at large.

This book has two goals, one cultural, the other technical. The
cultural goal is to document this open source culture to a certain
extent and provide practical advice for people managing or par-
ticipating in open source projects. The technical goal is to tell you
how to use CVS effectively, with an eye toward using it on open
source projects.

XVii

xviii

Introduction

As to the first goal, we want to stress the word “advice.” In fact no one, maybe not even
Richard Stallman, can speak about or document authoritatively the open source phenom-
enon. The field is simply too vast and it affects too many aspects of economic, cultural,
social, and political sciences to be fully grasped by one individual, and certainly not by the
authors of this book.

And as far as CVS is concerned, note that although it will be taught in the context of open
source projects, you will learn CVS well enough to use it anywhere. It’s not just for manag-
ing program source code; people also use it to version—ryes, that’s a verb now—Web sites,
text documents, configuration files, and so on.

We assume that you know something about programming or working with online docu-
ments, but previous familiarity with CVS is not required. At least some familiarity with
Unix and the sh or bash shells will prove handy, because the CVS examples are given in a
Unix environment.

Why a Third Edition?

Books go into second and later editions when the earlier editions sold well. There is no
better proof for the success of a book than it being republished in another edition.

Open Source Development with CVS is undoubtedly a highly successful book. The challenge
in writing a third edition lies in not destroying what made this a successful book, while at
the same time enhancing it to keep up with new developments.

From the time the first edition came out, the open source world has changed considerably.
Certainly, the open source world changed more than CVS itself changed or the way in

which CVS is used.

Open source grew quickly as Linux grew in popularity and as the Nasdaq made open source
“in” and “sexy.” Many companies, such as VA Linux, LinuxCare, Red Hat, and thousands
more, embraced open source and hacker ideals. Therefore, it was suddenly justifiable—
even desirable—for investors to release all software and all specifications back to the
community. Instead of making money from selling software, the investors then made money
from the added value of thorough understanding.

Open source was so popular that many big IT users, such as banks, insurance agencies,
and government agencies, decided to have an “open source strategy” for their IT de-
partments. Coauthor Moshe Bar is an “open source consultant” to many such companies
and agencies.

Hardly any software companies were able to afford not to have an open source strategy
of some sorts, but some companies made big announcements about the availability of
their software in open source without ever delivering on that promise. Then, abruptly,
with the bursting of the New Economy Bubble in early 2001, open source suddenly

Introduction xix

became “out” again. The investors demanded that high-tech companies finally deliver
a profit. So, Web sites started asking money for their services, service companies asked
for more money, and software companies started again to sell their software. Or at least
they tried.

What Has Changed?

In the first edition, the aim was to intersperse purely CVS-related chapters with those dealing
with open source and development organization. For the second edition, the approach was
changed to separate the two issues so that the reader would not be confused unnecessarily.

Thus, this book first covers all aspects of the CVS system (Chapters 1 through 7) and only
then addresses open source aspects (Chapters 8 through 11).

The CVS chapters now cover also the intricacies of working with CVS in big projects with
many developers spanning several time zones. Also, aspects of the administration of CVS
for professional environments will be explored more in depth, covering aspects of tuning,
backups, storage, and clustering.

Finally, the open source chapters have adapted to the changes in the industry. They men-
tion lessons to be learned from some of the exceptionally difficult challenges in open source
(for instance, the Mozilla browser project) and from some of the failures in open source.

A Word About Terminology

Today, free software means the freedom to modify and redistribute the source. It is this free-
dom, not the software’s low cost, that has been the key to free software’s success.

[s it open source or free software? One of its earliest proponents, Richard Stallman, insists the
proper term is free software (with free as in “free speech,” not as in “free beer”). The debate
about this term has been going on for decades and will probably never end. Essentially, the
two terms are synonymous, and they will be used interchangeably in this book. See Richard
Stallman’s essay “Why ‘Free Software’ is better than ‘Open Source’” at www.gnu.org/phi-
losophy/free-software-for-freedom.html for a well-written presentation of the case that
the terms are not interchangeable. Increasingly, the term free software is used for software of
the GNU project, such as gcc, emacs, make, and many more. In the ever-growing Linux
world, however, software fitting the free software description is nowadays called open source
or OpenSource. You will find the general press and the trade press often using only the term
open source, even for GNU software.

Conventions Used in this Book

Throughout the book, you'll find command-line examples interspersed with explanatory
text. The primary example user’s name is ahauzer, and she works on a machine named
yarkon.moelabs.com, so the command prompt looks like this:

XX

Introduction

yarkon$
with output (if any) shown in the same font immediately below the prompt:

yarkon$ whoami
ahauzer
yarkon$

Occasionally, the command itself is so long that it occupies two or more lines of a standard
Unix terminal. In that case, a backslash at the end of a line indicates that the next line is to
be considered a continuation, although it will be indented by the length of the prompt for
readability. For example:

yarkon$ cvs diff -c -r prerelease-beta-2_09-19990315 -r \
postrelease-3_0-19990325 fudgewinkle.c

(Don’t worry; by the end of the book, you will know what that command means!)

Sometimes we need to show commands run from other locations (when demonstrating
concurrent development by two different people, for example). In those cases, the other
user’s name is mbar, and he works on a machine named paste:

paste$ whoami
mbar
paste$

All commands take place in a Unix standard shell (either sh or bash) environment unless
otherwise specified. If you have even a basic familiarity with Unix, you won’t encounter
anything unusual in this book. However, you may notice that the Is command sometimes
behaves a little oddly:

yarkon$ 1s
foo.txt bar.c myproj/

The trailing “/” in myproj/ is not part of the name—it just indicates that myproj is a directory.
The reason the slash is displayed is that, in ahauzer’s environment, the lIs command is aliased
to run Is -CF—that is, to show files arranged in columns and displaying their type (“/ ” for
directories, “*” for executable files, “@” for symbolic links, and so on).

This format was chosen for many of the examples because it’s often very helpful to be able to
distinguish files from directories when reading the output. So even if you don’t see the -CF
options passed to the Is command, the output may behave as though they’re there.

Introduction xxi

Practicing What We Preach

The CVS-specific chapters of this book—2, 3, 4, 5, 10, and 11—are copyrighted under the
GNU General Public License and can be browsed or downloaded from http://cvsbook.red-

bean.com. If you find bugs in either the online or the treeware version, please report them
to bug-cvsbook@red-bean.com.

Chapter 1

Why Open Source Development
and CVS Go Together

What Is Free Software?

raditional capitalism is based on the idea of limited supply;

however, information has become a commodity in itself and
is never in short supply. In fact, the ubiquity of computers and the
Internet has made it possible to replicate any information effort-
lessly and without bounds. Even so, we still treat software as if it
were a tangible object in short supply. If you copy software from
somebody, you're legally stealing it. The software industry has at-
tempted to extend this metaphor into the information economy,
artificially re-creating the economics of limited supply by creating
software licenses.

There’s nothing wrong with making a living as a programmer or as
a software company employee or executive. The authors of this
book get part of their incomes as programmers. However, it’s non-
sensical to use this profit-model. Imagine a science-fiction device
that allows any sort of food or physical object to be infinitely du-
plicated. If somebody then tried to sell you a tire for your car, why
in the world would you buy it? You could just throw your friend’s
tire into the duplicator! However, you might want to pay some-
body to design a new tire for you or perhaps to install the tire on
your car. Or to help you when some other part of your car breaks,
you might want to buy a warranty for future support. Or maybe
just hire a personal mechanic.

Similarly, in a world where all software is in the public domain
and infinitely reproducible, programmers and software companies
are able to make a good living not by restricting the flow of soft-
ware, but by providing a service. Users pay the programmers and

2 Chapter 1

companies to design and write new public domain software, as well as install, maintain,
customize, troubleshoot, and teach others about it. A programmer or company sells labor,
not products—much like a mechanic, plumber, or electrician.

Getting back to the original question, then: Free means that the public domain software
comes with freedom—its users have the freedom to use it however they wish, including
copying it, modifying it, and selling it.

A particular company that is in the software business either directly, as an independent
software vendor (ISV), or indirectly, producing software as a key component of other goods
or services, faces several challenges. Among these challenges might be:

¢ Continuing to create new products and bring in new incremental revenue
¢ Improving new product quality at first release

¢ Doing a better job of sustaining engineering in supporting current and older releases
while still driving innovation in new releases

¢ More effectively recruiting third-party developer and integrator support for the company’s
products and platform

4 Motivating and retaining current employees and recruiting and energizing the next gen-
eration of employees

These challenges are interconnected for two reasons. First, most of them are functions of
constrained resources: Few companies have enough people, money, or time to do every-
thing that needs doing, especially when competing against larger companies with greater
resources. Second, all companies like this have at least one available strategy that might
help address all these issues together, turning some (or in exceptional cases even all) of your
software products into “open source” products.

Open Source Software

You've no doubt read about Netscape’s 1999 release of the source code for Netscape Commu-
nicator. You might also have heard about earlier open source projects such as the Linux operating
system kernel or have read papers such as Eric Raymond’s “The Cathedral and the Bazaar”
(www.tuxedo.org/~esr/writings/cathedral-bazaar/) that make a case that open source devel-
opment within an extended developer community results in better software. In this book, we
discuss how a commercial company or an organization of any kind can build a business or
extend an existing business through the creation and distribution of open source software—
and why it’s a good idea. In other words, we show you how to set up shop in the bazaar.

Potentially, moving to open source for a product can provide better value to your customers,
including (in particular) allowing your customers or third parties to improve that product
through bug fixes and product enhancements. In this way, you can create better and more
reliable products that are likely to more truly reflect your customers’ requirements.

Why Open Source Development and CVS Go Together

However, the real benefit of building a business on open source software is to provide greater
value to your customers than your competitors can, and ultimately to turn that increased
value into increased revenue and profits for your company. In the traditional software busi-
ness model, your company provides all (or almost all) of the value to customers, and you
realize revenues and profits in return for that value through traditional software license fees.
In an open source business model, you are not the only source of much of the value provided
to customers; other developers who are attracted to working on your open source products
will help augment your resources rather than your competitors’. These outside developers
might be motivated by the prospect of working with software that solves important prob-
lems for them and for others and by the possibility of future gain in providing related services
and creating related products. They might also be motivated by the opportunity to increase
their own knowledge or by the ego satisfaction of building an enhanced reputation among
their peers.

Thus, a significant part of your potential success depends on the work of others who work
“for free”—that is, open source developers who contribute their work to your company and
to the developer community at large without demanding or receiving any money or other
tangible payment in return. However, open source developers will not (and should not) do
this work unless you treat them fairly. This is in part a function of your company’s attitudes
and actions toward developers working with its products, but it is also formalized in the
company’s choice of an open source license, specifying the terms and conditions under
which the company’s open source products can be used, modified, and redistributed.

Open Source Licenses

There have been several standard license agreements published for use with open source
software. All of them have some common features, most notably making software free to
users both in terms of having no cost and in terms of minimizing restrictions on use and
redistribution. These features are necessary for developers to feel fairly treated. If possible,
you should use one of the existing open source licenses (see Appendixes A and B for ex-
amples) or modify one of those licenses to meet your needs; some licenses work better than
others for particular business models. Possible license choices include:

4 No license at all (that is, releasing software into the public domain)

¢ Licenses such as the BSD (Berkeley Software Distribution) License that place relatively
few constraints on what a developer can do (including creating proprietary versions of
open source products)

¢ The GNU General Public License (GPL) and variants that attempt to constrain devel-
opers from “hoarding” code—that is, making changes to open source products and not
contributing those changes back to the developer community, but rather attempting to
keep them proprietary for commercial purposes or other reasons

¢ The Artistic License, which modifies various of the more controversial aspects of the GPL

3

4 Chapter 1

¢ The Morzilla Public License (MozPL) and variants (including the Netscape Public Li-
cense or NPL) that go further than the BSD-like licenses in discouraging software hoarding,
but allow developers to create proprietary add-ons if they wish

Open Source Business Models

Because you can’t use traditional software licenses and license fees with open source software,
you must find other ways of generating revenues and profits based on the value you are provid-
ing to customers. Doing this successfully requires selecting a suitable business model and
executing it well. The following business models potentially are usable by companies creating
or leveraging open source software products (see www.opensource.orgfadvocacy/
case_for_business.html for examples and more information on the first four models):

¢ Support Sellers—Company revenue comes from media distribution, branding, training,
consulting, custom development, and post-sales support instead of traditional software
licensing fees

¢ Loss Leader—Company uses a no-charge open source product as a loss leader for tradi-
tional commercial software

¢ Widget Frosting—For companies that are in business primarily to sell hardware and that
use the open source model for enabling software such as driver and interface code

¢ Accessorizing—For companies that distribute books, computer hardware, and other physical
items associated with and supportive of open source software

¢ Service Enabler—Companies create and distribute open source primarily to support ac-
cess to revenue-generating online services

¢ Brand Licensing—A company charges other companies for the right to use its brand names
and trademarks in creating derivative products

¢ Sell It, Free [t—Software products start out their product life cycle as traditional commer-
cial products and are converted to open source products when appropriate

¢ Software Franchising—A combination of several of the other models (in particular Brand
Licensing and Support Sellers) in which a company authorizes others to use its brand
names and trademarks in creating associated organizations doing custom software devel-
opment (in particular, geographic areas or vertical markets) and supplies franchises with
training and related services in exchange for franchise fees of some sort

An organization might find any one of these business models—or a combination thereof—
far more value building and ultimately more stimulating than the traditional approach.

Why Open Source Development and CVS Go Together 5

How It All Started

The open source system did not somehow emerge spontaneously from the chaos of the
Internet. Although you could argue that something like this system was bound to evolve
eventually, the process was greatly accelerated by the stubbornness of one man: Richard
Stallman.

Stallman’s Idea

Informal code sharing had been around for a long time, but until Stallman gave the phe-
nomenon a name and made a cause of it, the participants were generally not aware of the
political consequences of their actions. In the 1970s, Stallman worked at the Massachusetts
Institute of Technology’s Artificial Intelligence Lab. The Lab was, in his own words (see his
essay at www.gnu.org/gnu/thegnuproject.html), a “software-sharing community,” an envi-
ronment in which changes to program source code were shared as naturally as the air in the
room. If you improved the system, you were expected to share your modifications with
anyone else running a similar system so everyone could benefit. Indeed, the phrase “your
modifications” is itself misleading; the work was “yours” in an associative sense, but not in a
possessive sense. You lost nothing by sharing your work and often benefited further when
someone else improved on your improvements.

This ideal community disintegrated around Stallman in about 1980. A computer company
hired away many of the Al Lab programmers by paying them big money to do essentially the
same work, but under an exclusive license. That company’s business model was the same as
that of most software shops today: Write a really good program (in this case, an operating
system), keep the source code under lock and key so no one else can benefit from it, and
charge a fee for each copy of the system in use. A “copy,” of course, meant a binary copy.
People outside the company could run the system, but they weren’t allowed to see or modify
the source code from which the executables were produced.

From the point of view of the former Al Lab programmers, the change might have appeared
fairly minor. They still were able to share code with each other, because most of them went
to work for the same company. However, they weren’t able to share their code with anyone
outside that company nor, for legal reasons, were they free to incorporate others’ code into
their products.

For Stallman, however, the prospect of hoarding code was intolerable; he’d had a taste of
what a sharing community could be. Instead of accepting the supposedly inevitable and
letting his community disappear, he decided to re-create it in a less vulnerable form. He
started a nonprofit organization called the Free Software Foundation and began to imple-
ment a complete, free, Unix-compatible operating system, which he called GNU (“GNU’s
Not Unix”). Even more importantly, he designed a copyright license, the terms of which
ensured the perpetual redistribution of his software’s source code. Instead of trying to re-
serve exclusive copying rights to the author or owner of the code, the General Public License

6 Chapter 1

(see Appendix A) prevented anyone from claiming exclusive rights to the work. If you had
a copy of the work covered by the license, you were free to pass it around to others, but you
could not require that others refrain from giving out copies. The rights had to be copied
along with the code. These rights extended to modified versions of the work, so that once a
work was covered by the GPL, no one could make a few changes and then resell it under a
more restrictive license.

Stallman’s idea caught on. Other people began releasing programs under the GPL and occa-
sionally inventing similar licenses. In the meantime, the Internet was enabling programmers
across the globe to have access to each other’s code, if they chose to cooperate. Thus, the
new software-sharing community came to include virtually anyone who wanted to join and
had a Net connection, regardless of physical location.

At this point—about 1990—only a few people shared Stallman’s confidence that public
ownership of code was how all software ought to be. Even some regular contributors to the
GNU project were not necessarily in favor of all software being free, pleased though they
might have been with what the GNU project had accomplished so far. Before long, though,
the movement (if it could be called that yet) received a tremendous psychological boost
from the appearance of some completely free operating systems. In Finland, Linus Torvalds
had reimplemented an entire Unix kernel (called Linux) and published his source code
under the GPL. Combined with the Unix utilities already available from the GNU project,
this became a usable distribution of Unix. Not long afterwards came the release of 386BSD,
based on the BSD version of Unix, whose development had actually started before Linux.
These were soon followed by the confusingly named NetBSD, FreeBSD, and, more recently,
OpenBSD.

The appearance of entirely free operating systems was a real boon for the movement—and
not just in technical terms. It proved that free code could result in quality software (in many
situations, the free systems performed better and crashed less often than their commercial
competitors). Because the vast majority of applications that ran on these systems were also
free, there was a dramatic increase in the free software user base and, therefore, in the
number of developers contributing their talents to free software.

The Two Types of Development

As more users removed commercial operating systems from their computers and installed
free ones, the rest of the world (by which we mean nonprogrammers) began to notice that
something unexpected was happening. With his usual timeliness, Eric Raymond published
a paper, “The Cathedral and the Bazaar”, which partly explained why free software was
often so technically successful. The paper contrasted two styles of software development.
The first, “cathedral-style,” is tightly organized, centrally planned, and is essentially one
creative act from start to finish. (Actually, we rather doubt that real cathedrals are built this
way, but that’s a topic for another time.) Most commercial software is written cathedral-
style, with a guru heading up a team and deciding what features go into each release.

Why Open Source Development and CVS Go Together 7

The other style resembles, in Raymond’s memorable phrase, “a great babbling bazaar of
differing agendas and approaches (aptly symbolized by the Linux archive sites, which would
take submissions from anyone) out of which a coherent and stable system could seemingly
emerge only by a succession of miracles.” But emerge it did, and Raymond hit on the key
reason for the recurrence of the miracle: “Given enough eyeballs, all bugs are shallow”
(Linus’s Law). The trouble with the cathedral style is that it fails to enlist the software’s
most natural ally—the users. A small (or even medium-sized) team of developers quickly
becomes overwhelmed with the influx of bug reports and feature requests, and must spend a
fair amount of time simply prioritizing and figuring out what to do next. Even after they
know what they want to do, there’s no telling how long it will take to track down a particu-
lar bug and come up with a maintainable solution. The result is that part of the development
team spends too much time solving these issues and is unavailable for other work.

Furthermore, commercial development teams often operate under constraints (budgets,
deadlines, and marketing strategies) unrelated to the technical problems of the software.
Even the decision to continue maintaining a certain program is often based on business
factors having little to do with the software’s intrinsic quality and potential.

The users, on the other hand, just want good code. They want a useful program, they want the
bugs fixed, and they want appropriate features added and inappropriate ones rejected. In ret-
rospect, the solution seems obvious: Why not give the users the freedom to make all this
happen themselves? Even though the vast majority of users are not programmers and cannot
contribute to actually changing the code, those few who can will end up benefiting everyone.

What Does CVS Have to Do with It?

As with any popular movement that experiences sudden growth, the free software movement
soon discovered that it had logistical problems. It was no longer enough for a free software
author merely to place her code on a public Internet server and wait for people to download it.
What if people downloaded it and then sent in hundreds of bug fixes and code contributions?
For a popular program, no single author could be expected to organize and integrate all this
feedback and still have time to write original code. In a closed source, centrally directed
software company, the number of developers is relatively small and well paid, and the tasks are
divided in advance. However, the open source author is often an unpaid volunteer who has no
idea where the next useful snippet of code will come from or what that snippet will do. If she’s
lucky, she might have an organized core group of co-developers who can help fix bugs and
review incoming contributions to ensure that they meet the project’s standards. This
type of group probably has a high turnover rate, though, because its members are likely
also volunteers.

A geographically distributed volunteer organization obviously cannot afford to spend weeks
or months training its members to work together, only to lose this investment whenever a
member leaves the group and is replaced by a newcomer. A base set of conventions for

8 Chapter 1

contributing to shared projects was also necessary—so newcomers could fit in easily—as
well as an automated system for accepting contributions and keeping everyone up to date
with changes to the code. These requirements are not, of course, unique to free software,
but they were particularly pressing in this case because volunteers are less able to devote
resources to management and are more likely to seek automated solutions that don’t take a
long time to learn.

diff and patch

The groundwork for such a system had already been laid. The standard Unix diff program
knew how to reveal concisely the differences between two files. If you “take the diff” (as we
say in the vernacular) between a file before a given modification and the same file after-
ward, the resulting diff—that is, the output of the diff program—consists of only the
modification and omits those parts of the file that remain unchanged. A trained eye can
look at a diff and know approximately what happened to the file; more importantly, a trained
program can look at a diff and tell exactly what happened. Therefore, diff was soon aug-
mented, to no one’s surprise, by patch. Written by Larry Wall and released as free software,
patch was to diff as integrals are to derivatives. If you take the difference between file A and
file B (remember that B is often just A after some modifications) and feed it to patch along
with one of the two files, patch can reconstruct the other file. (One result of this was that
diffs soon came to be called “patches” and that’s how we’ll usually refer to them in the rest

of this book.)

If this seems of dubious utility to you, put yourself in the position of the software developer
who needs to accept code contributions from outside sources. A contribution, in practical
terms, consists of a set of changes to various files in the project. The maintainer wants to
know exactly what those changes are—what files were modified and how. Assuming the
changes pass muster, he or she wants to put them into the code with a minimum of fuss. The
ideal way to accomplish this is to receive a series of patches that can be inspected by eye and
then automatically incorporated into the current sources via the patch program. (In real
life, of course, the maintainer’s sources might have other changes by that time, but patch is
smart enough to perform fuzzy matching, so it usually does the right thing even if the files
are no longer exactly the same as the ones used to produce the patch.)

With diff and patch, there was a convenient, standard way to submit contributions; how-
ever, programmers soon recognized a further need. Sometimes, a submission was incorporated
into the sources and had to be removed later because it contained flaws. Of course, by that
time, it was hard to figure out who applied what patch when. Even if programmers could
track down the change, manually undoing the effect of a patch long after the fact is a
tedious and error-prone process. The solution was a system for keeping track of a project’s
history—one that allowed the retrieval of previous versions for comparison with the present
version. Again, this problem is not limited to free software projects—it is shared by the
commercial world and various systems have been written to solve it. Most free software

Why Open Source Development and CVS Go Together 9

projects, as well as quite a few commercial ones, chose Walter Tichy’s Revision Control
System (RCS), which is free and also relatively portable.

RCS

RCS did the job, but in hindsight, it lacked several important features. For one thing, it
dealt with projects in a file-centric way; it had no concept that the various files of a project
were related, even though they might all be in the same directory tree. It also used the
“lock-modify-unlock” style of development, in which a developer wishing to work on a file
first “locked” it so no one else could make changes to it, then did her work, and then
unlocked the file. If you tried to lock a file already locked by someone else, you either had to
wait until they were done or “steal” the lock. In effect, it was necessary to negotiate with
other developers before working on the same files, even if you would be working in different
areas of code (and, predictably, people sometimes forgot to unlock files when they were
finished). Finally, RCS was not network-aware. Developers had to work on the same ma-
chine where RCS’s per-file historical data was kept or resort to clumsy handwritten scripts
to transfer data between their working machines and the RCS server.

The Winner: CVS

Thus was born the latest (and maybe not the last) in this progression of tools: CVS, or
Concurrent Versions System. CVS addresses each of the aforementioned problems in RCS.
In fact, it started out as a collection of scripts (written by Dick Grune in 1986) that were
designed to make RCS a bit easier and were posted to the Usenet newsgroup
comp.sources.unix. In 1989, Brian Berliner rewrote CVS in the C programming language,
and Jeff Polk later added some key features.

CVS actually continued to use the original RCS format for storing historical data and initially
even depended on the RCS utilities to parse that format, but it added some extra abilities. For
one thing, CVS was directory-aware and had a mechanism for giving a group of directories a
name by which they could be retrieved. This enabled CVS to treat a project as a single entity,
which is how people think of projects. CVS also didn’t require that files be locked and un-
locked. Instead, developers could hack away at the code simultaneously and, one by one,
register their changes into the repository (where the project’s master sources and change his-
tory are kept). CVS took care of the mechanics of recording all these changes, merging
simultaneous edits to the same file when necessary, and notifying developers of any conflicts.

Finally, in the early 1990s, Jim Kingdon (then at Cygnus Solutions, now at Cyclic Software)
made CVS network-aware. Developers could now access a project’s code from anywhere on
the Internet. This opened code bases to anyone whose interest was sparked, and because CVS
intelligently merged changes to the same files, developers rarely had to worry about the logis-
tics of having multiple people working on the same set of sources. In a sense, CVS did for code
what banks do for money: Most of us have been freed from worrying about the logistics of
protecting our money, accessing it in faraway places, recording our major transactions, sorting

10 Chapter 1

out concurrent accesses, or accidentally spending more than we have. The bank automati-
cally takes care of the first four and notifies us with an alarm when we’ve done the last.

The CVS way of doing things—networked access to sources, simultaneous development,
and intelligent automated merging of changes—has proven attractive to closed-source
projects as well as free ones. At present, both worlds use it frequently; however, it has really
become dominant among the free projects. A central thesis of this book is that CVS be-
came the free software world’s first choice for revision control because there’s a close match
(watch out; we almost said “synergy”) between the way CVS encourages a project to be run
and the way free projects actually do run. To see this, we need to look a bit more closely at
the open source process.

Principles of Open Source Development and How
CVS Helps

Programmers have long known that they could work together in physical and temporal
separation from each other. The phenomenon has grown to the extent that it has its own
academic/professional literature and acronym: CSCW (Computer Supported Collabora-
tive Work). Although sites such as www.sourceforge.net are burgeoning with collaborative,
open source software projects, little seems to be happening in the way of collaborative con-
tent development.

The principles Eric Raymond outlines in his essay “The Cathedral and the Bazaar,” al-
though aimed squarely at programmers, are perfectly valid for use in the development of
content. The development model relies on and succeeds because of the interest and effort
of talented authors and the truth of Linus’s Law.

The first principle is that the source code is made accessible to the entire world (a major shift,
if one is accustomed to proprietary software development). Instantly, a question arises: When
should the source code be made available, and how often? At first glance, it would seem that
the most recently released version would suffice, but if others are to find and fix bugs, they
need access to the latest development sources, the same files the maintainers are working on.
It’s terribly discouraging to a potential contributor to spend days tracking down and fixing a
bug, only to discover on submitting the patch that the bug has already been found and fixed.
As any programmer knows, a release is just a snapshot of a development tree at a particular
moment. [t might be an unusually well-tested snapshot, but from the code’s point of view,
the released version is not qualitatively different from a snapshot taken at any other time.
As far as contributing authors are concerned, a free software project is in a state of continu-
ous release.

Unfortunately, traditional methods of software distribution weren’t designed for continu-
ous, incremental updates. They were designed around the idea that a release is a monumental
event, deserving special treatment. In this “grand event” way of doing things, the release is

Why Open Source Development and CVS Go Together

packaged into a static collection of files, detached from the project’s past history and future
changes, and distributed to users, who stay with that release until the next one is ready,
sometimes months or years later. Naturally, the development sources do not remain static
during that time. All of the changes that are to go into the next release start slowly accumu-
lating in the developer’s copy of the sources, so that by the time the new release date nears,
the code is already in a substantially different state from the previous release. Thus, even if
full source code were included in every release, it still wouldn’t help much. Users soon
would be working with out-of-date files and have no convenient way to check the state of
the master sources accessed by the maintainer and core developers.

For a while, this situation was handled with workarounds—partial solutions that were not
terribly convenient but could at least be tolerated. Snapshots of the development sources
were made available online on a regular basis, and any users who wanted to keep up with
the project’s state could retrieve those sources and install them. For those who did this
regularly, the process could be partially automated by scripts that retrieved and installed
each “development release” nightly. However, this is still an unsatisfactory way to receive
changes. If even one line of code in one file changed and everything else stayed the same,
the interim release would still have to be retrieved in its entirety.

The answer (you knew this was coming) is CVS. In addition to giving active developers a
convenient way to enter their changes into the master repository, CVS also supports anony-
mous, read-only access to the repository. This means that anyone can keep a development
tree on his or her local machine, and when the programmer wants to start working on a
particular area of code, he or she simply runs one command to make sure the tree is up to
date. Then, after checking to make sure that the problem hasn’t already been fixed in the
batch of changes just received, the programmer begins to work. Finally, when the changes
are ready, CVS automates the process of producing a patch, which is then sent to the
maintainers for inspection and possible incorporation into the master source tree.

The point here is not that CVS makes something possible that previously was impossible;
retrieving up-to-date sources and producing patches were all theoretically possible before
CVS appeared. The difference is that CVS makes it convenient. In a system that relies largely
on volunteer energy, convenience is not a mere luxury—it is often the factor that deter-
mines whether people will contribute to your project or turn their attention to something
with fewer obstacles to participation. Projects are competing for volunteer attention on
their merits, and those merits include not only the quality of the software itself, but also
potential developers’ ease of access to the source and the readiness of the maintainers to
accept good contributions. CVS’s great advantage is that it reduces the overhead involved
in running a volunteer-friendly project by giving the general public easy access to the sources
and by offering features designed specifically to aid the generation of patches to the sources.

The number of free software projects that keep their master sources in CVS is impressive by
itself. Even more impressive is that some of those projects are among the largest (in terms of
number of contributors) and most successful (in terms of installed base) on the Internet.

11

12 Chapter 1

They include the Apache WWW server, the GNOME free desktop environment, FreeBSD,
NetBSD, OpenBSD, the PostgreSQL database, the XEmacs text editor, and many more. In
later chapters, we’ll examine in detail how projects use CVS to manage their sources and
aid their volunteers.

What Makes It All Tick?

Until now, we’ve focused on the advantages of free software for users. However, developers
still face an interesting choice when they consider free software. As long as copyright law
exists in its current form, it will probably always be more lucrative for a programmer to work
on proprietary code—the profits can be enormous (even after illegal sharing is taken into
account) when each running copy of a popular program is paid for individually. If you want
to get rich, your course is clear: Write a useful piece of closed-source software, get it noticed,
and wait for Microsoft to make an offer for your company.

Yet somehow, free software projects still manage to find programmers. There are probably as
many different explanations for this as there are people writing free code. Nevertheless, if
you spend enough time watching mailing lists and developer discussion groups, a few core
reasons become apparent: necessity, community, glory, and money—not necessarily in that
order and certainly not mutually exclusive.

Necessity

Eric Raymond hypothesizes that the first reason, necessity (the need to “scratch an itch”), is
the chief reason why most free software projects get started at all. If you just want a problem
solved, once and forever, and you aren’t looking to bring in any revenue from the code
(aside from the time you’ll save by using it), then it makes a lot of sense to release your
program under a free license. If you're lucky, your solution will turn out to be useful to other
people, and they’ll help you maintain it. Call it the Kropotkin Factor—sometimes, coop-
eration is simply the most winning strategy.

Community

Our favorite reason, though, is actually the second: community. The sheer pleasure of work-
ing in partnership with a group of committed developers is a strong motivation in itself. The
fact that little or no money is involved merely attests to the strength of the group’s desire to
make the program work, and the presence of collaborators also confirms that the work is
valuable outside one’s own narrow situation. The educational value of working with a group
of experienced programmers should not be discounted, either. We’ve certainly learned more
about programming from reading freely available code, following online discussions about
the code, and asking questions, than from any book or classroom. Many active developers of
free software would probably say the same thing. Most seem quite conscious that they are
participating in a kind of informal, peer-to-peer university and will happily explain things

Why Open Source Development and CVS Go Together

to a newcomer, as long as they feel the newcomer shows promise of contributing to the code
base eventually.

Glory

Meanwhile, in the back of everyone’s mind (well, not yours or ours, of course!), is glory—
the fame that comes from occupying a prominent position on the developer team of a widely
used free program. Most programmers with even a peripheral involvement in free software
are likely to recognize the names Linus Torvalds and Alan Cox (for work on the Linux
kernel), Brian Behlendorf (of the Apache Web Server team), and Larry Wall (inventor of,
among other things, the popular Perl programming language). Raw self-aggrandizement
might not be the most attractive motive, but it can be powerful and if properly harnessed, it
can bring about a lot of useful code. Happily, in the free software culture, you can achieve
glory only by sharing the benefits of your work rather than hiding them. Note that there is
often no official (that is, legal) recognition of what constitutes a “prominent position” in a
group of developers. People acquire influence by writing good code, finding and fixing bugs,
and consistently contributing constructively in public forums. Such an unregulated system
might seem open to exploitation but, in practice, attempts to steal credit don’t succeed—
too many people are too close to the code to be fooled by any false claims. A developer’s
influence in the community is directly proportional to the frequency and usefulness of her
contributions, and usually everyone involved knows this.

One side effect is an uncommon scrupulousness about giving credit where credit is due.
You've probably noticed that we’re being careful to mention developers’ names when talk-
ing about specific pieces of software. Giving credit by name is a common practice in the free
software world, and it makes sense. Because the work is often done for little or no pay, the
possibility that contributions will be recognized and reputations correspondingly enhanced
makes the work attractive. Fortunately, another side effect of using CVS (or any version
control system) is that the precise extent of every developer’s modifications is recorded in
the change history, which can be retrieved and examined by anyone at any time.

Money

Finally, there is money. People have begun to find ways to get paid to work on free software.
In many cases, the wages are considerably more than a bare living, and even if not quite as
lucrative as, say, stock options at a proprietary software company, the pleasure of seeing
one’s code widely distributed is often enough to compensate for a little income foregone.

One way for people to make money is to sell services centered on a particular code base. The
software might be free, but expertise is still in limited supply. A common strategy is to special-
ize in knowing everything there is to know about a particular free tool or suite of tools and
offer technical support, customizations, and training. Often, the company also contributes to
the maintenance of the program (and no wonder, because it’s in the company’s interest to
ensure that the code remains healthy and free of bitrot). More recently, companies have

13

14 Chapter 1

begun to specialize in packaging particular distributions of free software and trading on the
“brand name” they earn through making reliable bundles. Oddly enough, this actually seems
to work. Red Hat Software has been profitably selling Linux distributions on CD-ROM for
several years, despite the fact that anyone is free to copy its CDs and resell them or even
download the software directly from Red Hat. Apparently, the reliability of its distribution
is important enough to consumers that people will pay a little more for the extra reassur-
ance of getting it on CD-ROM directly from Red Hat instead of from a reseller.

Also, hardware companies sometimes devote resources to guaranteeing that popular free
applications run on their machines. If a company formerly offered proprietary software as a
sideline to its hardware and service businesses, it might now ship free software that it has
tested and perhaps modified to perform better on its hardware. You might think that the
company would want to keep its modifications secret (were that permitted by the software’s
license in the first place), but it turns out to be entirely to the company’s advantage to
release any changes back into common distribution. By doing so, the company avoids hav-
ing to shoulder the entire maintenance burden itself. By releasing the source, it has
empowered its users to give feedback on whether the program runs well on the hardware.
(The goodwill thus gained among its customers might also be a factor.) Because it isn’t in
the software business anyway, the hardware company is not looking for a direct return on
investment in that area.

The arrival of big money into the formerly pure free software world has not been seen
universally as a positive development and, in fact, has led to some rather heated debate
about the ultimate purpose of free software. To attempt to summarize that debate is like
diving into shark-infested waters, indeed; however, it’s a significant issue right now, so we’ll
don shark repellent and do our best. The issue arose because free software has been so
technically successful. Stable, bug-free software—whatever its origins—is something any
business wants to offer its clients, as long as doing so doesn’t conflict with any other goals
(such as increasing sales of one’s own closed-source software). In the for-profit consulting
world, the innate quality of the software, in a purely technical sense, is the only concern. If
the best product is free software, so be it; if it’s something else, use that instead.

The terms of redistribution are not a major factor in the decision to use the software, except
in how that affects one’s ability to use it. Thus, some people are for free software simply
because it leads to better code, which can also imply reduced hassle and higher profits. For
others, however, cooperation itself is the goal. Richard Stallman is one of the most forceful
evangelists for this position (for him, sharing information is a moral crusade), but he is not
alone in viewing profit-driven development with distrust.

Factionalism as a Sign of Strength

Although we personally lean toward the “cooperation is the goal” attitude, we also don’t
think free software is really threatened by the influx of corporate money. For free software,
the only truly important currency is developer attention. To the degree that corporate money

Why Open Source Development and CVS Go Together

subsidizes developers who devote time to free software, it helps the software and the com-
munity. When that money is used to pay for closed-source software, programmers will still
create and maintain free code, and that code will continue to be of high quality. That’s
simply what many programmers want, and what they do on their own time is up to them.
Perhaps occasionally, a company will promote a program as “open source” when it’s not and
briefly tempt a few developers into wasting their time with code that is not free. However,
the legal language of the software’s license is open for inspection, and no amount of market-
ing or propaganda can make it mean something it doesn’t. Inevitably, developers realize this
and turn their attention to truly free work.

In the end, the appearance of factionalism (of which the disagreement about the role of
money is only one example) in the free software movement is probably a sign of strength. It
means that people are now secure enough about free software’s success that they no longer
feel the need to present a unified public front or avoid rocking the boat. From here, it’s
merely a matter of taking over the world.

15

Chapter 2
An Overview of CVS

CVS Basics

In this chapter, we explore the basics of CVS and then go into an
in-depth guided tour of everyday CVS usage by looking at some
examples. After completing this chapter, you will be able to use
CVS’s most fundamental functions.

If you've never used CVS (or any version control system) before,
it’s easy to get tripped up by some of its underlying assumptions.
What seems to cause the most initial confusion about CVS is that
it is used for two apparently unrelated purposes: record keeping
and collaboration. It turns out, however, that these two functions
are closely related.

Source revision control systems like CVS became necessary be-
cause people wanted to compare a program’s current state with
how it was at some point in the past. In the normal course of
implementing a new feature, for instance, a developer might bring
the program into a thoroughly broken state, in which it can some-
times remain until the feature is mostly finished. Unfortunately,
this is just the time when someone usually calls to report a bug in
the last publicly released version. To debug the problem (which
might also exist in the current version of the sources), the pro-
gram has to be brought back to a usable state.

Restoring the state poses no difficulty if the source code history is
kept under CVS. The developer can simply say, in effect, “Give me
the program as it was three weeks ago,” or perhaps “Give me the
program as it was at the time of our last public release.” If you’ve
never had this kind of convenient access to historical snapshots

17

18 Chapter 2

before, you might be surprised at how quickly you come to depend on it. The authors of this
book always use revision control in their coding projects—and it has saved them many times.

To understand what this has to do with facilitating collaboration, we need to take a closer
look at the mechanism that CVS provides to help numerous people work on the same
project.

What CVS Is Not: The Lock-Modify-Unlock Model

Let’s take a look at a mechanism that CVS doesn’t provide (or at least, doesn’t encourage):
file locking. If you've used other version control systems, you might be familiar with the
lock-modify-unlock development model, wherein a developer first obtains exclusive write
access (a lock) to the file to be edited, makes the changes, and then releases the lock to
allow other developers access to the file. If someone else already has a lock on the file, they
have to “release” it before you can lock it and start making changes (in some implementa-
tions, you can “steal” their lock, but that is often an unpleasant surprise for them and not
good practice).

This model is workable if the developers know each other, know who’s planning to do what
at any given time, and can communicate with each other quickly if someone cannot work
because of access contention. However, if the developer group becomes too large or too
spread out, dealing with all the locking issues begins to chip away at coding time. It quickly
becomes a constant hassle that can discourage people from getting real work done.

What CVS Is: The Copy-Modify-Merge Model

CVS takes a more mellow approach. Rather than requiring that developers coordinate with
each other to avoid conflicts, CVS enables developers to edit simultaneously, assumes the
burden of integrating all the changes, and keeps track of any conflicts. This process uses the
copy-modify-merge model, which works as follows:

1. The developer downloads a working copy (a directory tree containing the files that make
up the project) from CVS. This is also known as “checking out” a working copy, like
checking a book out of the library.

2. The developer edits freely in his working copy. At the same time, other developers
might be busy in their own working copies. Because these are all separate copies, there
is no interference. It is as if all of the developers have their own copy of the same library
book, and they’re all at work scribbling comments in the margins or rewriting certain
pages independently.

3. The developer finishes his changes and commits them into CVS along with a “log mes-
sage,” which is a comment explaining the nature and purpose of the changes. This is like
informing the library of what changes he made to the book and why. The library then
incorporates these changes into a “master” copy, where they are recorded for all time.

An Overview of CVS

4. Meanwhile, other developers can ask CVS to query the library to see if the master copy
has changed recently. If it has, CVS automatically updates their working copies. (This
part is magical and wonderful, and we hope you appreciate it. Imagine how different
the world would be if real books worked this way!)

As far as CVS is concerned, all developers on a project are equal. Deciding when to update or
when to commit is largely a matter of personal preference or project policy. One common
strategy for coding projects is to always update before commencing work on a major change
and to commit only when the changes are complete and tested so that the master copy is
always in a “runnable” state.

Perhaps you’re wondering what happens when developers A and B, each in their own work-
ing copy, make different changes to the same area of text and then both commit their
changes? This is called a conflict, and CVS notices it as soon as developer B tries to commit
changes. Instead of allowing developer B to proceed after developer A has committed changes
to the same files, CVS announces that it has discovered a conflict and places conflict markers
(easily recognizable textual flags) at the conflicting location in his copy. That location also
shows both sets of changes, arranged for easy comparison. Developer B must sort it all out
and commit a new revision with the conflict resolved. Perhaps the two developers will need
to talk to each other to settle the issue. CVS only alerts the developers that there is a
conflict; it’s up to human beings to actually resolve it.

What about the master copy? In official CVS terminology, it is called the project’s repository.
The repository is simply a file tree kept on a central server. Without going into too much
detail about its structure (see Chapter 3 for more information), let’s look at what the reposi-
tory must do to meet the requirements of the checkout-commit-update cycle. Consider the
following scenario:

1. Two developers, Joseph and Sarah, check out working copies of a project at the same
time. The project is at its starting point—no changes have been committed by anyone
yet, so all the files are in their original, pristine state.

2. Sarah gets right to work and soon commits her first batch of changes.
3. Meanwhile, Joseph is not doing any work at all.

4. Sarah, feeling quite productive, commits her second batch of changes. Now, the
repository’s history contains the original files, followed by Sarah’s first batch of changes,
followed by this set of changes.

5. Meanwhile, developer Joseph remains inactive.

6. Suddenly, developer Robert joins the project and checks out a working copy from the
repository. Robert’s copy reflects Sarah’s first two sets of changes, because they are al-
ready in the repository when Robert checks out his copy.

7. Sarah, still feeling very productive, completes and commits her third batch of changes.

19

20 Chapter2

8. Finally, blissfully unaware of the recent frenzy of activity, Joseph decides it’s time to
start work. He doesn’t bother to update his copy; he just commences editing files, some
of which might be files that Sarah has worked in. Shortly thereafter, Joseph commits
his first changes.

At this point, one of two things can happen. If none of the files Joseph edited have been
edited by Sarah, the commit succeeds. However, if CVS detects that some of Joseph’s files
are out of date with respect to the repository’s latest copies, and those files have also been
changed by Joseph in his working copy, CVS informs Joseph that he must do an update
before committing those files.

When Joseph runs the update, CVS merges all of Sarah’s changes into Joseph’s local copies
of the files. Some of Sarah’s work might conflict with Joseph’s uncommitted changes, and
some might not. Those parts that don’t are simply applied to Sarah’s copies without further
complication; Joseph must resolve the conflicting ones before they can be committed.

If developer Robert does an update now, he’ll receive several batches of changes from the
repository: Sarah’s third commit, then Joseph’s first, and then possibly Joseph’s second com-
mit (if Joseph had to resolve any conflicts).

Commits Stored as Diffs

In order for CVS to serve up changes in the correct sequence to developers whose working
copies might be out of sync by varying degrees, the repository needs to store all commits
since the project’s beginning. In practice, the CVS repository stores them all as successive
diffs. Consequently, even for a very old working copy, CVS is able to calculate the differ-
ence between the working copy’s files and the current state of the repository, and is thereby
able to bring the working copy up to date efficiently. This makes it easy for developers to
view the project’s history at any point and to revive even very old working copies.

Although, strictly speaking, the repository could achieve the same results by other means,
in practice, storing diffs is a simple, intuitive means of implementing the necessary func-
tionality. The process has other added benefits. By using patch appropriately, CVS can
reconstruct any previous state of the file tree and thus bring any working copy from one
state to another. It can allow someone to check out the project as it looked at any particular
time. It can also show the differences, in diff format, between two states of the tree without
affecting anyone’s working copy.

As a result, the very features necessary to give convenient access to a project’s history are
also useful for allowing a group of decentralized developers working separately to collabo-
rate on the project.

Review of Terms

For now, you can ignore the details of setting up a repository, administering user access, and
navigating CVS-specific file formats. For the moment, we’ll concentrate on how to make
changes in a working copy. But first, here is a quick review of terms:

An Overview of CVS

¢ Check out—To request a working copy from the repository. Your working copy reflects
the state of the project as of the moment you checked it out; when you and other devel-
opers make changes, you must use the commit and update commands to “publish” your
changes and view others’ changes.

¢ Commit—To send changes from your working copy into the central repository. Also known
as check in.

¢ Conflict—The situation when two developers try to commit changes to the same region
of the same file. CVS notices and points out conflicts, but the developers must resolve
them.

¢ Log message—A comment you attach to a revision when you commit it, describing the
changes. Others can page through the log messages to get a summary of what’s been
going on in a project.

¢ Repository—The master copy where CVS stores a project’s full revision history. Each
project has exactly one repository.

¢ Revision—A committed change in the history of a file or set of files. A revision is one
“snapshot” in a constantly changing project.

¢ Update—To bring others’ changes from the repository into your working copy and to
show whether your working copy has any uncommitted changes. Be careful not to con-
fuse this with the commit operation; they are complementary, not identical, operations.
Here’s a mnemonic to help you remember: update brings your working copy up to date
with the repository copy.

¢ Working copy—The copy in which you actually make changes to a project. There can be
many working copies of a given project; generally, each developer has his or her own
copy.

Other Revision Control Systems

Obviously, CVS is not the only revision control system in use. CVS is not even the only
revision control system used for open source projects. Quite a lot of open source software is
actually written on Windows platforms.

BitKeeper

BitKeeper is a revision control system, similar, at least at some level, to RCS, CVS, ClearCase,

Visual Source Safe, Sun Teamware, and other revision control systems. Some of the features
which make BK/Pro stand out in the crowded SCM market include:

¢ Inherently reliable and scalable through replication

¢ Change sets provide reproducibility, accountability, and aid in debugging

21

22 Chapter 2

¢ Powerful GUI tools shorten development time and remove human error

¢ Excellent merging tools save engineering time and increase productivity

¢ Repositories such as branches allow controlled development

¢ Geographically distributed development works as well as local development
¢ Disconnected operation with no loss of functionality

¢ Compressed repositories reduce disk space and increase performance

¢ Excellent file renaming support allows flexibility as projects grow

¢ Scalable to thousands of developers

¢ Multi-protocol (FS/RSH/SSH/HTTP/BKD/SMTP) connectivity: work how and where

you want

BK/Pro is a scalable configuration management system, supporting globally distributed de-
velopment, disconnected operation, compressed repositories, change sets, and repositories
as branches.

Distributed means that every developer gets their own personal repository, complete with
revision history. The tool also handles moving changes between repositories. SSH, RSH,
BKD, HTTP, and/or SMTP can all be used as communication transports between reposito-
ries; or, if both are local, the system just uses the file system. For example, this command
updates from a remote system to a local file system using ssh:

bk pull bitmover.com:/home/bk/bk-3.0.x

Change sets are a formalization of a patch file (i.e., one or more changes to one or more
files.) Change sets also provide built-in configuration management—the creation of a change
set saves the entire state of your repository, both what changed and what didn’t, in less than
a second.

Other features: file names are revisioned and propagated just like contents; graphical inter-
faces are provided for merging, browsing, and creating changes; changes are logged to a
private or public change server for centralized tracking of work; bug tracking is in the works
and will be integrated.

The BitKeeper License

This is actually the most difficult to understand part of BitKpeer. If you’re willing to live
with the restrictions of a pseudo-open-source license, you can use BitKeeper for free (as in
no-cost) under the terms of the BitKeeper License (bk help bkl). The restrictions put on
you are that you cannot distribute modified copies that don’t pass the BK regression test.
Among the things the regression test checks is its ability to send logging information back

An Overview of CVS 23

to BitMover. This logging information is supposedly only the comments generated from
checking in new versions, but I have not verified that to be true.

If you are in a situation where you don’t want that information publicly available, then BitMover
is in a situation where they’d love to sell you a license. | have no information on the cost of
commercial prices of BitKeeper. They have information on their web page that leads me to
believe it is on par with the cost of ClearCase (at leats as far as per seat purchase price), which
would put it in the $1,000+ range. Of course, you should talk to them about this.

Microsoft VSS

Next to CVS, one of the most widely used source systems for the Windows platform is Microsoft’s
VSS, or Visual Source Safe. Microsoft VSS helps you manage your projects, regardless of the
file type (text files, graphics files, binary files, sound files, or video files) by saving them to a
database. VSS easily integrates with Microsoft Access, Visual Basic, Visual C++, Visual FoxPro,
and other development tools. If VSS is integrated into your development environment, you
do not need to run VSS separately to realize the advantages of source code control.

VSS makes a distinction between text files (files that contain only characters) and binary
files (all others). For most operations, you can treat text and binary files exactly the same—
VSS uses its highly disk-efficient reverse delta storage on all files, text and binary. The
reverse delta is a system that stores incremental changes to a baseline file rather than stor-
ing each successive version of the file in its entirety. VSS uses the current version of a file as
the baseline, and it saves changes from the previous versions. This results in reduced disk
storage requirements and faster access times, because only the current version is stored in
the database in its entirety.

When you add a file to VSS, it’s automatically assigned a type: text or binary. The default
mechanism for creating this assignment is a simple test: VSS scans the file for NULL char-
acters (bytes with value 0). If it finds such a character, VSS identifies the file as binary.

Although generally accurate, this method might on occasion incorrectly assign the text
type to a binary file. Therefore, VSS allows you to explicitly set the file type option to Auto-
Detect, Binary, or Text. Auto-Detect is the default. A file retains the type it was originally
given, unless you explicitly change it.

Here are the significant differences in how VSS treats binary and text files:

¢ Storing changes—Internally, VSS uses different mechanisms for storing changes for text
files (which have distinct lines as units of comparison) and binary files (which have no
obvious line delimiter). That’s why it is important for VSS to correctly identify the type
of a file. VSS identifies files as binary if a NULL character exists in the file.

¢ The show differences command—With a binary file, VSS stores each change as a small
record of which bytes moved where; this is useful for reconstructing earlier versions, but
not for display. VSS can tell you if the file has changed, but it cannot display how the file
has changed.

24 Chapter 2

¢ Merging binary files—VSS cannot perform this operation.
¢ Multiple checkouts on binary filess—VSS cannot perform this operation.

¢ End-of-line characters—With a text file, VSS automatically translates end-of-line charac-
ters between different operating systems; with a binary file, VSS does not alter the contents
of the file except with keyword expansion.

RCS and GNU/RCS

One other source control system is the honorable RCS, which stands for Revision Control
System. It is a simple system for keeping track of changes to files. A master copy is kept in a
repository, and users can check out working copies. Only locked copies can be edited or
modified. RCS stores all changes (with comments, author, and timestamp) in the master
copy. A revision can be checked out or compared to any other revision or to the current
working copy. When a batch of changes has been done and a new revision is wanted, the
working copy can be checked in. RCS is a good system for single users or very small teams,
because concurrent changes to a file are not allowed. More advanced systems, such as CS-
RCS (CS stands for ComponentSoftware), CVS, and Perforce, use the same file format but
have extended capabilities for teamwork. Perforce also can work at high speed even for
huge projects and provides import tools.

In “traditional” GNU/RCS, the master files are kept in the same directory as the working
copy or in a subdirectory called “RCS”. This arrangement makes it easy to use RCS with
files stored on removable media. CS-RCS is compatible with this arrangement and can also
be used in an enhanced mode with a central repository. This repository can be either local
(for the free version) or on a server (for the version that is not free), and several remote
workstations can access it. The use of a central repository adds to normal RCS capabilities
the possibility of grouping files located in different directories—or even on different work-
stations—into a single “project.” This allows operations to be carried out simultaneously on
all files—for example, to freeze a release of a system. Perforce also uses a central repository,
and in addition works on Windows and several flavors of Unix.

GNU/RCS is free and consists of a series of console applications. CS-RCS is based on
GNU/RCS but has a very well integrated front end for the Win32 environment. It is free
for single user setup, but it is not free for multi-user network setup with a shared repository.
Perforce is commercial software that is aimed at teams of several developers or writers, but it
is free for up to two users.

Most implementations of RCS can be used with both text and binary files.

SCCS

SCCS allows several versions of the same file to exist simultaneously, which can be helpful
when developing a project requiring many versions of large files. The SCCS commands sup-
port Multibyte Character Set (MBCS) characters. The SCCS commands form a complete

An Overview of CVS 25

system for creating, editing, converting, or changing the controls on SCCS files. An SCCS
file is any text file controlled with SCCS commands. All SCCS files have the prefix “s.”,
which sets them apart from regular text files.

Rather than creating a separate file for each version of a file, the SCCS file system stores
only the changes for each version of a file. These changes are referred to as deltas. The
changes are tracked by the delta table in every SCCS file.

Each entry in the delta table contains information about who created the delta, when they
created it, and why they created it. Each delta has a specific SID (SCCS Identification
number) of up to four digits. The first digit is the release, the second digit the level, the third
digit the branch, and the fourth digit the sequence. No SID digit can be 0, so there cannot
be an SID of 2.0 or 2.1.2.0, for example.

Here’s an example of an SID number that specifies release 1, level 2, branch 1, sequence 4:

SID=1.2.1.4

Each time a new delta is created, it is given the next higher SID number by default. That
version of the file is built using all the previous deltas. Typically, an SCCS file grows se-
quentially, so each delta is identified only by its release and level. However, a file can branch
and create a new subset of deltas. The file then has a trunk, with deltas identified by release
and level, and one or more branches, which have deltas containing all four parts of an SID.
On a branch, the release and level numbers are fixed, and new deltas are identified by
changing sequence numbers.

After the delta table in an SCCS file, a list of flags starting with @ (the at sign) define the
various access and tracking options of the SCCS file. The SCCS flag functions include:

¢ Designating users who may edit the files

¢ Locking certain releases of a file from editing
¢ Allowing joint editing of the file

¢ Cross-referencing changes to a file

The SCCS file body contains the text for all the different versions of the file. Consequently, the
body of the file does not look like a standard text file. Control characters bracket each portion of
the text and specify which delta created or deleted it. When the SCCS system builds a specific
version of a file, the control characters indicate the portions of text that correspond to each
delta. The selected pieces of text are then used to build that specific version.

A Tour of CVS

Now that we have gone over the concepts of source revisioning, we can enter into an
introduction to fundamental CVS usage. This is followed by a sample session that covers all

26 Chapter 2

of the most typical CVS operations. As the tour progresses, we’ll also start to look at how
CVS works internally.

Although you don’t need to understand every last detail of CVS implementation to use it,
a basic knowledge of how it works is invaluable in choosing the best way to achieve a given
result. CVS is more like a bicycle than an automobile, in the sense that its mechanisms are
entirely transparent to anyone who cares to look. As with a bicycle, you can just hop on and
start riding immediately. However, if you take a few moments to study how the gears work,
you'll be able to ride it much more efficiently. (In the case of CVS, we’re not sure whether
transparency was a deliberate design decision or an accident, but transparency does seem to
be a property shared by many free programs. Externally visible implementations have the
advantage of encouraging users to become contributing developers by exposing them to the
system’s inner workings right from the start.)

Our tour takes place in a Unix environment. CVS also runs on Windows and Macintosh
operating systems, and Tim Endres of Ice Engineering has even written a Java client (see
www.ice.com/java/jcvs/), which can be run anywhere Java runs. However, we’re going to
take a wild guess and assume that the majority of CVS users—present and potential—are
most likely working in a Unix command-line environment. If you aren’t one of these, the
examples in the tour should be easy to translate to other interfaces. Once you understand
the concepts, you can sit down at any CVS front end and work with it (trust us, we’ve done
it many times).

The examples in the tour are oriented toward people who will be using CVS to keep track
of programming projects. However, CVS operations are applicable to all text documents,
not just source code.

The tour also assumes that you already have CVS installed (it’s present by default on many
of the popular free Unix systems, so you might already have it without knowing it) and that
you have access to a repository. Even if you are not set up, you can still benefit from reading
the tour. Later in this book, you'll learn how to install CVS and set up repositories.

Assuming CVS is installed, you should take a moment to find the online CVS manual.
Known familiarly as the “Cederqvist” (after Per Cederqvist, its original author), it comes
with the CVS source distribution and is usually the most up-to-date reference available. It’s
written in Texinfo format and should be available on Unix systems in the “Info” documen-
tation hierarchy. You can read it either with the command-line info program

yarkon$ info cvs

or by pressing Ctrl+H and then typing “i” inside Emacs. If neither of these works for you,
consult your local Unix guru (or see Chapter 3 regarding installation issues). You'll defi-

nitely want to have the Cederqvist at your fingertips if you’re going to be using CVS regularly.

An Overview of CVS 27

Invoking CVS

CVS is one program, but it can perform many different actions: updating, committing,
branching, diffing, and so on. When you invoke CVS, you must specify which action you
want to perform. Thus, the format of a CVS invocation is:

yarkon$ cvs command

For example, you can type in

yarkon$ cvs update
yarkon$ cvs diff
yarkon$ cvs commit

and so on. Do not run these commands yet; we are just listing them for a better understand-
ing. We will get to real CVS work very soon.

Both CVS and the command can take options. Options that affect the behavior of CVS,
independently of the command being run, are called global options; command-specific op-
tions are called simply command options. Global options always go to the left of the command,
and command options go to its right. Therefore, in this line of code

yarkon$ cvs -Q update -p

-Q is a global option, and -p is a command option. (If you're curious, -Q means “quietly”—
that is, suppress all diagnostic output, and print error messages only if the command absolutely
cannot be completed for some reason; -p means to send the results of the update command
to standard output instead of to files.)

Repository Access and the Working Environment

Before you can do anything, you must tell CVS the location of the repository you’ll be
accessing. This isn’t a concern if you already have a working copy checked out—any work-
ing copy knows what repository it came from, so CVS can automatically deduce the repository
for a given working copy. However, let’s assume you don’t have a working copy yet, so you
need to tell CVS explicitly where to go. This is done with the -d global option (the -d
stands for “directory,” an abbreviation for which there is a historical justification, although
-r for “repository” might have been better), followed by the path to the repository. For
example, assuming the repository is on the local machine in /usr/local/cvs (a fairly standard
location), you would execute the following code:

yarkon$ cvs -d /usr/local/cvs command

In many cases, however, the repository is on another machine and must therefore be reached
over the network. CVS provides a choice of network access methods; which one you’ll use

28 Chapter 2

depends mostly on the security needs of the repository machine—hereinafter referred to as
“the server.” We cover setting up the server to allow various remote access methods later in
this book; here, we’ll deal only with the client side.

Fortunately, all the remote access methods share a common invocation syntax. In general,
to specify a remote repository as opposed to a local one, you just use a longer repository path.
You first name the access method, delimited on each side by colons, followed by the username
and the server name (joined with an @ sign), another separator colon, and finally the path
to the repository directory on the server.

Let’s look at the pserver access method, which stands for “password-authenticated server”:

yarkon$ cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs login
(Logging in to jrandom@cvs.foobar.com)

CVS password: (enter your CVS password here)

yarkon$

The long repository path following -d told CVS to use the pserver access method, with the
username jrandom, on the server cvs.foobar.com, which has a CVS repository in fusr/local/cvs.
There’s no requirement that the hostname be “cvs.something.com,” by the way; that’s a com-
mon convention, but it could just as easily have been:

yarkon$ cvs -d :pserver:jrandom@fish.foobar.org:/usr/local/cvs login

The command that was actually run was login, which verifies that you are authorized to
work with this repository. It prompts for a password, then contacts the server to verify the
password. Following Unix custom, cvs login returns silently if the login succeeds; it shows
an error message if it fails (for instance, because the password is incorrect).

You have to log in only once from your local machine to a given CVS server. After a suc-
cessful login, CVS stores the password in your home directory, in a file called .cvspass. It
consults that file every time a repository is contacted via the pserver method, so you have
to run login only the first time you access a given CVS server from a particular client ma-
chine. Of course, you can rerun cvs login at any time if the password changes. pserver is
currently the only access method requiring an initial login like this; with the others, you
can start running regular CVS commands immediately.

Once you’ve stored the authentication information in your .cvspass file, you can run other
CVS commands using the same command-line syntax:

yarkon$ cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs command

Getting pserver to work in Windows might require an extra step. Windows doesn’t have
the Unix concept of a home directory, so CVS doesn’t know where to put the .cvspass file.
You'll have to specify a location. It is usual to designate the root of the C: drive as the home
directory:

An Overview of CVS 29

C:\WINDOWS> set HOME=C:

C:\WINDOWS> cvs -d :pserver:jrandom@cvs.foobar.com:/usr/Tocal/cvs Togin
(Logging in to jrandom@cvs.foobar.com)

CVS password: (enter your CVS password here)

C:\WINDOWS>

In addition to pserver, CVS supports the ext method (which uses an external connection
program, such as rsh or ssh), kserver (for the Kerberos security system version 4), and
gserver (which uses the GSSAPI, or Generic Security Services API, and also handles
Kerberos versions 5 and higher). These methods are similar to pserver, but each has its own
idiosyncrasies.

Of these, the ext method is probably the most commonly used. If you can log in to the
server with rsh or ssh, you can use the ext method. You can test it like this:

yarkon$ rsh -1 jrandom cvs.foobar.com
Password: enter your login password here

Okay, let’s assume you successfully logged in and logged out of the server with rsh, so now
you're back on the original client machine:

yarkon$ CVS_RSH=rsh; export CVS_RSH
yarkon$ cvs -d :ext:jrandom@cvs.foobar.com:/usr/Tocal/cvs command

The first line sets (in Unix Bourne shell syntax) the CVS_RSH environment variable to
rsh, which tells CVS to use the rsh program to connect. The second line can be any CVS
command; you will be prompted for your password so CVS can log in to the server.

For Windows, try this:

C:\WINDOWS> set CVS_RSH=rsh

The rest of the tour will use the Bourne syntax; translate for your environment as necessary.

To use ssh (the Secure Shell) instead of rsh, just set the CVS_RSH variable appropriately:
yarkon$ CVS_RSH=ssh; export CVS_RSH

Don’t get thrown by the fact that the variable’s name is CVS_RSH but you're setting its
value to ssh. There are historical reasons for this (the catchall Unix excuse, we know).
CVS_RSH can point to the name of any program capable of logging you in to the remote
server, running commands, and receiving their output. After rsh, ssh is probably the most
common such program, although there are probably others. Note that this program must
not modify its data stream in any way. This disqualifies the Windows NT rsh, because it
converts (or attempts to convert) between the DOS and Unix line-ending conventions.
You'd have to get some other rsh for Windows or use a different access method.

30 Chapter2

The gserver and kserver methods are not used as often as the others and are not covered
here. They’re quite similar to what we've covered so far; see the Cederqvist manual for
details.

If you use only one repository and don’t want to type -d repository each time, just set the
CVSROOT environment variable (which perhaps should have been named CVSREPOS,
but it’s too late to change that now), like this

yarkon$ CVSROOT=/usr/local/cvs
yarkon$ export CVSROOT

yarkon$ echo $CVSROOT
/usr/local/cvs

yarkon$

or like this:

yarkon$ CVSROOT=:pserver:jrandom@cvs.foobar.com:/usr/local/cvs
yarkon$ export CVSROOT

yarkon$ echo $CVSROOT
:pserver:jrandom@cvs.foobar.com:/usr/local/cvs

yarkon$

The rest of this tour assumes that you've set CVSROOT to point to your repository, so the
examples will not show the -d option. If you need to access many different repositories, you
should not set CVSROOT and should use -d repository when you need to specify the
repository.

Starting a New Project

If you're learning CVS in order to work on a project that’s already under CVS control (that
is, it is kept in a repository somewhere), you'll probably want to skip down to the next
section, “Checking Out a Working Copy.” On the other hand, if you want to take existing
source code and put it into CVS, this is the section for you. Note that it still assumes you
have access to an existing repository; see Chapter 3 if you need to set up a repository first.

Putting a new project into a CVS repository is known as importing. The CVS command is

yarkon$ cvs import

except that it needs some more options (and needs to be in the right location) to succeed.
First, go into the top-level directory of your project tree:

yarkon$ cd myproj

yarkon$ 1s

README.txt a-subdir/ b-subdir/ hello.c
yarkon$

An Overview of CVS 31

This project has two files—README.txt and hello.c—in the top level, plus two sub-direc-
tories—a-subdir and b-subdir—plus some more files (not shown in the example) inside
those subdirectories. When you import a project, CVS imports everything in the tree, start-
ing from the current directory and working its way down. Therefore, you should make sure
that the only files in the tree are ones you want to be permanent parts of the project. Any
old backup files, scratch files, and so on should all be cleaned out.

The general syntax of an import command is:

yarkon$ cvs import -m "Tog msg" projname vendortag releasetag

The -m flag (for message) is for specifying a short message describing the import. This will be
the first log message for the entire project; every commit thereafter will also have its own log
message. These messages are mandatory; if you don’t give the -m flag, CVS automatically
starts up an editor (by consulting the EDITOR environment variable) for you to type a log
message in. After you save the log message and exit the editor, the import then continues.

The projname argument is the project’s name (we’ll use “myproj”). This is the name under
which you'll check out the project from the repository. (What actually happens is that a
directory of that name gets created in the repository, but more on that in Chapter 3.) The
name you choose now does not need to be the same as the name of the current directory,
although in most cases it is.

The vendortag and releasetag arguments are a bit of bookkeeping for CVS. Don’t worry
about them now; it rarely matters what you use. In Chapter 4 you’ll learn about the rare
circumstances in which they’re significant. For now, we'll use a username and start for those
arguments.

We're ready to run import:

yarkon$ cvs import -m "initial import into CVS"™ myproj jrandom start
N myproj/hello.c

N myproj/README. txt

cvs import: Importing /usr/Tocal/cvs/myproj/a-subdir

N myproj/a-subdir/whatever.c

cvs import: Importing /usr/Tocal/cvs/myproj/a-subdir/subsubdir

N myproj/a-subdir/subsubdir/fish.c

cvs import: Importing /usr/Tocal/cvs/myproj/b-subdir

N myproj/b-subdir/random.c

No conflicts created by this import
yarkon$

Congratulations! If you ran that command (or something similar), you’ve finally done some-
thing that affects the repository.

32 Chapter2

Reading over the output of the import command, you’ll notice that CVS precedes each file
name with a single letter—in this case, “N” for “new file.” The use of a single letter on the
left to indicate the status of a file is a general pattern in CVS command output. We'll see it
later in the checkout and update commands as well.

You might think that, having just imported the project, you can start working in the tree
immediately. This is not the case, however. The current directory tree is still not a CVS
working copy. It was the source for the import command, true, but it wasn’t magically changed
into a CVS working copy merely by virtue of having been imported. To get a working copy,
you need to check one out from the repository.

First, though, you might want to archive the current project tree. The reason is that once
the sources are in CVS, you don’t want to confuse yourself by accidentally editing copies
that aren’t in version control (because those changes won’t become part of the project’s
history). You should do all of your editing in a working copy from now on. However, you
also don’t want to remove the imported tree entirely, because you haven’t yet verified that
the repository actually has the files. Of course, you can be 99.999 percent certain that it
does because the import command returned with no error, but why take chances? As every
programmer knows, paranoia pays. Therefore, do something like this:

yarkon$ 1s

README.txt a-subdir/ b-subdir/ hello.c
yarkon$ cd ..

yarkon$ 1s

myproj/

yarkon$ tar zcf was_myproj.tar.gz myproj
yarkon$ rm -fr myproj/

yarkon$ 1s

was_myproj/

yarkon$

There. You still have the original files, but they’re clearly named as an obsolete version, so
they won’t be in the way when you get a real working copy. Now, you're ready to check out.

Checking Out a Working Copy

The command to check out a project is exactly what you think it is:

yarkon$ cvs checkout myproj

cvs checkout: Updating myproj

U myproj/README. txt

U myproj/hello.c

cvs checkout: Updating myproj/a-subdir

U myproj/a-subdir/whatever.c

cvs checkout: Updating myproj/a-subdir/subsubdir
U myproj/a-subdir/subsubdir/fish.c

An Overview of CVS

cvs checkout: Updating myproj/b-subdir
U myproj/b-subdir/random.c

yarkon$ 1s

myproj/ was_myproj/

yarkon$ cd myproj

yarkon$ 1s

CvsS/ README.txt a-subdir/ b-subdir/ hello.c
yarkon$

Well done! Your first working copy! Its contents are exactly the same as what you imported,
with the addition of a subdirectory named “CVS.” That’s where CVS stores version-control
information. Actually, each directory in the project has a CVS subdirectory:

yarkon$ 1s a-subdir

CVS/ subsubdir/ whatever.c
yarkon$ 1s a-subdir/subsubdir/
CVs/ fish.c

yarkon$ 1s b-subdir

CVS/ random.c

The fact that CVS keeps its revision information in subdirectories named CVS means
that your project can never contain subdirectories of its own named CVS. In prac-
tice, we’ve never heard of this being a problem.

Before editing any files, let’s take a peek inside CVS:

yarkon$ cd CVS

yarkon$ 1s

Entries Repository Root
yarkon$ cat Root
/usr/local/cvs

yarkon$ cat Repository
myproj

yarkon$

Nothing difficult there. The Root file points to repository, and the Repository file points to
a project inside the repository. If that’s a little confusing, let us explain.

There is a longstanding confusion about terminology in CVS. The word “repository” is used
to refer to two different things. Sometimes, it means the root directory of a repository (for
example, [usr/local/cvs), which can contain many projects; this is what the Root file refers
to. However, other times, it means one particular project-specific subdirectory within a re-
pository root (for example, [usr/local/cvs/myproj, /ust/local/cvs/yourproj, or /ust/local/cvs/
fish). The Repository file inside a CVS subdirectory takes the latter meaning.

33

34 Chapter2

In this book, “repository” generally means Root (that is, the top-level repository), although
we might occasionally use it to mean a project-specific subdirectory. If the intended sense
can’t be figured out from the context, we will include clarifying text.

Note that the Repository file can sometimes contain an absolute, rather than a relative,
path to the project name. This can make it slightly redundant with the Root file:

yarkon$ cd CVS

yarkon$ cat Root
:pserver:jrandom@cvs.foobar.com:/usr/local/cvs
yarkon$ cat Repository

/usr/local/cvs/myproj

yarkon$

The Entries file stores information about the individual files in the project. Each line deals
with one file, and there are lines for only files or subdirectories in the immediate parent
directory. Here’s the top-level CVS/Entries file in myproj:

yarkon$ cat Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 2001//
/hello.c/1.1.1.1/Sun Apr 18 18:18:22 2001//
D/a-subdir////

D/b-subdir////

The format of each line is
/filename/ revision number/datestamp//

and the directory lines are prefixed with D. (CVS doesn’t really keep a change history for
directories, so the fields for revision number and datestamp are empty.)

The datestamps record the date and time of the last update (in Universal Time, not local
time) of the files in the working copy. That way, CVS can easily tell whether a file has been
modified since the last checkout, update, or commit command. If the file system timestamp
differs from the timestamp in the CVS/Entries file, CVS knows (without even having to
consult the repository) that the file was probably modified.

If you take a look at the CVS/* files in one of the subdirectories

yarkon$ cd a-subdir/CVS

yarkon$ cat Root

/usr/local/cvs

yarkon$ cat Repository

myproj/a-subdir

yarkon$ cat Entries

/whatever.c/1.1.1.1/Sun Apr 18 18:18:22 2001//

An Overview of CVS

D/subsubdir////
yarkon$

you can see that the root repository has not changed, but the Repository file spells out the
location of this subdirectory of the project, and the Entries file contains different lines.

Immediately after import, the revision number of every file in the project is shown as 1.1.1.1.
This initial revision number is a bit of a special case, so we won’t examine it in detail just
yet; we'll take a closer look at revision numbers after we’ve committed some changes.

Making a Change

The project, as it stands, doesn’t do much. Here are the contents of hello.c:

yarkon$ cat hello.c
#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");

Let’s make the first change to the project since importing it; we’ll add the line
printf ("Goodbye, world!\n");
right after the Hello, world!. Invoke your favorite editor and make the change:

yarkon$ emacs hello.c

This was a fairly simple change, one where you’re not likely to forget what you did. How-
ever, in a larger, more complex project, it’s quite possible that you might edit a file, be
interrupted by something else, and return several days later and be unable to remember
exactly what you did—or even whether you changed anything at all. This brings us to our
first “CVS Saves Your Life” situation: comparing your working copy against the repository.

Finding Out What You (and Others) Did: update and diff

Previously, we talked about updating as a way of bringing changes down from the repository
into your working copy—that is, as a way of getting other people’s changes. However, up-
date is really a bit more complex; it compares the overall state of the working copy with the
state of the project in the repository. Even if nothing in the repository has changed since the
checkout command was executed, something in the working copy might have changed,
and update will show that, too:

35

36 Chapter2

yarkon$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

The M next to hello.c means the file has been modified since it was last checked out, and
the modifications have not yet been committed to the repository.

Sometimes, merely knowing which files you've edited is all you need. However, if you want
a more detailed look at the changes, you can get a full report in diff format. The diff com-
mand compares the possibly modified files in the working copy to their counterparts in the
repository and displays any differences:

yarkon$ cvs diff
cvs diff: Diffing .
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -rl.1.1.1 hello.c

6a’7

> printf ("Goodbye, world!\n");

cvs diff: Diffing a-subdir

cvs diff: Diffing a-subdir/subsubdir

cvs diff: Diffing b-subdir

That’s helpful, if a bit obscure, but there’s still a lot of cruft in the output. For starters, you
can ignore most of the first few lines. They just name the repository file and give the num-
ber of the last checked-in revision. These are useful pieces of information under other
circumstances (we’ll look more closely at them later), but you don’t need them when you’re
just trying to get a sense of what changes have been made in the working copy.

A more serious impediment to reading the diff is that CVS is announcing its entry as it goes
into each directory during the update. This can be useful during long updates on large
projects, because it gives you a sense of how much longer the command will take, but right
now it’s just getting in the way of reading the diff. Let’s tell CVS to be quiet about where it’s
working, with the -Q global option:

yarkon$ cvs -Q diff
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -rl.1.1.1 hello.c

6a’7

An Overview of CVS 37

> printf ("Goodbye, world!\n");

Better—at least some of the cruft is gone. However, the diff is still hard to read. It’s telling
you that at line 6, a new line was added (that is, what became line 7), whose contents were:

printf ("Goodbye, world!\n");

The preceding “>” in the diff tells you that this line is present in the newer version of the
p g y p
file but not in the older one.

The format can be made even more readable, however. Most people find “context” diff
format easier to read because it displays a few lines of context on either side of a change.
Context diffs are generated by passing the -c flag to diff:

yarkon$ cvs -Q diff -c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1
diff -c -rl1.1.1.1 hello.c

*** hello.c 2001/04/18 18:18:22 1.1.1.1
--- hello.c 2001/04/19 02:17:07
Kk kok ok kk ok k k& kK

kK AT KkkK
- 4,8 -
main ()
{
printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

How much clearer could it get? Even if you're not used to reading context diffs, a glance at
the preceding output probably makes it obvious what happened: A new line was added (the
+ in the first column signifies an added line) between the line that prints Hello, world! and
the final curly brace.

We don’t need to be able to read context diffs perfectly (that’s patch’s job), but it’s worth
taking the time to acquire at least a passing familiarity with the format. The first two lines
(after the introductory cruft) are

*** hello.c 2001/04/18 18:18:22 1.1.1.1
--- hello.c 2001/04/19 02:17:07

and they tell you what is being diffed against what. In this case, revision 1.1.1.1 of hello.c is
being compared against a modified version of the same file (thus, there’s no revision num-
ber for the second line, because the only changes that haven’t been committed to the

38 Chapter2

repository yet are those in the working copy). The lines of asterisks and dashes identify
sections farther down in the diff. Later on, a line of asterisks, with a line number range
embedded, precedes a section from the original file. Then a line of dashes, with a new and
potentially different line number range embedded, precedes a section from the modified
file. These sections are organized into contrasting pairs (known as “hunks”), one side from
the old file and the other side from the new.

Our diff has one hunk:

*hkkkkkkkkkhkkkkkk

kkk)] kkkk

- 4,8 -

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");

The first section of the hunk is empty, meaning that no material was removed from the
original file. The second section shows that, in the corresponding place in the new file, one
line has been added; it’s marked with a “+”. (When the diff quotes excerpts from files, it
reserves the first two columns on the left for special codes, such as “+”, so the entire excerpt
appears to be indented by two spaces. This extra indentation is stripped off when the diff
command is applied, of course.)

The line number ranges show the hunk’s coverage, including context lines. In the original
file, the hunk was in lines 4 through 7; in the new file, it’s lines 4 through 8 (because a line
has been added). Note that the diff didn’t need to show any material from the original file
because nothing was removed; it just showed the range and moved on to the second half of

the hunk.

Here’s another context diff, from an actual project of ours:

yarkon$ cvs -Q diff -c
Index: cvs2cl.pl

RCS file: /usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76
diff -c -rl.76 cvs2cl.pl

*** cvs2cl.pl 2001/04/13 22:29:44 1.76
--- cvszcl.pl 2001/04/19 05:41:37
kkkkkkkkhkkkkkkkk

* %k 212,218 *kkk
can contain uppercase and lowercase letters, digits, '-',
and '_'. However, it's not our place to enforce that, so
we'll allow anything CVS hands us to be a tag:

An Overview of CVS

! /M\s([~:1+): ([0-9.1+H)$/;
push (@{$symbolic_names{$2}}, $1);

}
-- 212,218 --
can contain uppercase and lowercase letters, digits, '-',
and '_'. However, it's not our place to enforce that, so
we'll allow anything CVS hands us to be a tag:
! /M\s([~:1+): ([\d.1H)$/;
push (@{$symbolic_names{$2}}, $1);

The exclamation point shows that the marked line differs between the old and new files.
Because there are no “+” or “-” signs, we know that the total number of lines in the file has
remained the same.

Here’s one more context diff from the same project, slightly more complex this time:

yarkon$ cvs -Q diff -c
Index: cvs2cl.pl

RCS file: /usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76
diff -c -rl.76 cvs2cl.pl

***% cys2cl.pl 2001/04/13 22:29:44 1.76
--- cvs2cl.pl 2001/04/19 05:58:51
*khkkkkhkkhkhkkhkkhkhkhkkkk
* kK 207,217 *kkk
}
else # we're Tooking at a tag name, so parse & store it
{
- # According to the Cederqvist manual, in node "Tags", "Tag

- # names must start with an uppercase or Towercase Tetter and
- # can contain uppercase and lowercase letters, digits, '-',
- # and '_'. However, it's not our place to enforce that, so
- # we'll allow anything CVS hands us to be a tag:
/M\s([*:]+): ([0-9.]1+H)$/;
push (@{$symbolic_names{$2}}, $1);
}
- 207,212 --
*khkkkkhkkhkkhkkhkkhkhkhkkkk
* kK 223,228 *kkk
--- 218,225 --
if (/~revision (\d\.[0-9.]1+)$/) {
$revision = "$1";

39

40 Chapter 2

+ # This 1ine was added, we admit, solely for the sake of a diff example.

If have file name but not time and author, and see date or
author, then grab them:

This diff has two hunks. In the first, five lines were removed (these lines are shown only in
the first section of the hunk, and the second section’s line count shows that it has five fewer
lines). An unbroken line of asterisks forms the boundary between hunks, and in the second
hunk we see that two lines have been added: a blank line and a pointless comment. Note
how the line numbers compensate for the effect of the previous hunk. In the original file,
the second hunk’s range of the area was lines 223 through 228; in the new file, because of
the deletion that took place in the first hunk, the range is in lines 218 through 225.

If you understand diff so far, you already qualify as an expert in many situations.

CVS and Implied Arguments

In each of the CVS commands so far, you might have noticed that no files were specified on
the command line. We ran

yarkon$ cvs diff

instead of:

yarkon$ cvs diff hello.c
In addition, we ran
yarkon$ cvs update
instead of:

yarkon$ cvs update hello.c

The principle at work here is that if you don’t name any files, CVS acts on all files for which
the command could possibly be appropriate. This even includes files in subdirectories be-
neath the current directory; CVS automatically descends from the current directory through
every subdirectory in the tree. For example, if you modified b-subdir/random.c and a-subdir/
subsubdir/fish.c, running update may result in this

yarkon$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir

An Overview of CVS 41

cvs update: Updating a-subdir/subsubdir
M a-subdir/subsubdir/fish.c

cvs update: Updating b-subdir

M b-subdir/random.c

yarkon$

or better yet

yarkon$ cvs -q update

M hello.c

M a-subdir/subsubdir/fish.c
M b-subdir/random.c

yarkon$

The -q flag is a less emphatic version of -Q. Had we used -Q, the command would
have printed out nothing at all, because the modification notices are considered
nonessential informational messages. Using the lowercase -q is less strict; it sup-
presses the messages we probably don’t want, while allowing more useful messages
to pass through.

You can also name specific files for the update

yarkon$ cvs update hello.c b-subdir/random.c
M hello.c

M b-subdir/random.c

yarkon$

and CVS will examine only those files, ignoring all others.

It’s actually more common to run update without restricting it to certain files. In most
situations, you'll want to update the entire directory tree at once. Remember, the updates
we’re doing here show only that some files have been locally modified, because nothing has
changed yet in the repository. When other people are working on the project with you,
there’s always the chance that running update will pull some new changes down from the
repository and incorporate them into your local files. In that case, you might find it slightly
more useful to name which files you want updated.

The same principle can be applied to other CVS commands. For example, with diff, you
can choose to view the changes one file at a time

yarkon$ cvs diff -c b-subdir/random.c
Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v

42 Chapter 2

retrieving revision 1.1.1.1
diff -c¢ -rl1.1.1.1 random.c

*** p-subdir/random.c 2001/04/18 18:18:22 1.1.1.1
--- b-subdir/random.c 2001/04/19 06:09:48
*kkkkkkkkhkkkkkkkk

* kK 1 *kkk
I /* A completely empty C file. */
- 1,8 - -

' /* Print out a random number. */
1

! #Hinclude <stdio.h>
1

! void main ()

[t

! printf ("a random number\n");
1}

or to see all the changes at once (hang on to your seat; this is going to be a big diff):

yarkon$ cvs -Q diff -c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1
diff -c¢ -r1.1.1.1 hello.c

*** hello.c 2001/04/18 18:18:22 1.1.1.1
--- hello.c 2001/04/19 02:17:07
kkkkkkkkhkkkkkkkk

*k*k 4,7 *kkk

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

Index: a-subdir/subsubdir/fish.c

RCS file: /usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
retrieving revision 1.1.1.1
diff -c -rl1.1.1.1 fish.c

*** g-subdir/subsubdir/fish.c 2001/04/18 18:18:22 1.1.1.1
--- a-subdir/subsubdir/fish.c 2001/04/19 06:08:50
*hkkkhkhkkkkkhkkkkkkk

* %k 1 *kkk

I /* A completely empty C file. */
- 1,8 - -

! #tinclude <stdio.h>

An Overview of CVS

! void main ()

[t

! while (1) {

! printf ("fish\n");

[
Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.1.1.1
diff -c¢ -rl1.1.1.1 random.c

*** p-subdir/random.c 2001/04/18 18:18:22 1.1.1.1
--- b-subdir/random.c 2001/04/19 06:09:48
kkkkkkkkhkkkkkkkk

* k% 1 *k k%

I /* A completely empty C file. */
- 1,8 -

' /* Print out a random number. */
1

! #Hinclude <stdio.h>

! void main ()
[t
! printf ("a random number\n");

Anyway, as you can see from these diffs, this project is clearly ready for prime time. Let’s
commit the changes to the repository.

Committing

The commit command sends modifications to the repository. If you don’t name any files, a
commit will send all changes to the repository; otherwise, you can pass the names of one or
more files to be committed (in that case, other files are ignored).

Here, we commit one file by name and two by inference:

yarkon$ cvs commit -m "print goodbye too" hello.c
Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <-- hello.c
new revision: 1.2; previous revision: 1.1
done

yarkon$ cvs commit -m "filled out C code"
cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

43

44 Chapter 2

cvs commit: Examining b-subdir

Checking in a-subdir/subsubdir/fish.c;
/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v <-- fish.c
new revision: 1.2; previous revision: 1.1

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <-- random.c
new revision: 1.2; previous revision: 1.1

done

yarkon$

Take a moment to read over the output carefully. Most of what it says is pretty self-explana-
tory. One thing you may notice is that revision numbers have been incremented (as expected),
but the original revisions are listed as 1.1 instead of 1.1.1.1 as we saw in the Entries file
earlier.

The explanation for this discrepancy is not very important. It concerns a special meaning
that CVS attaches to revision 1.1.1.1. For most purposes, we can just say that files receive a
revision number of 1.1 when imported, but the number is displayed—for reasons known
only to CVS—as 1.1.1.1 in the Entries file, until the first commit.

Revision Numbers

Each file in a project has its own revision number. When a file is committed, the last por-
tion of the revision number is incremented by one. Thus, at any given time, the various files
making up a project might have very different revision numbers. This just means that some
files have been changed (committed) more often than others.

(You might be wondering, what’s the point of the part to the left of the decimal point, if
only the part on the right ever changes? Actually, although CVS never automatically incre-
ments the number on the left, that number can be incremented on request by a user. Because
this is a rarely used feature, we don’t cover it in this book.)

Version vs. Revision

The internal revision number that CVS keeps for each file is unrelated to the version number of the
software product of which the files are part. For example, you might have a project composed of
three files, whose internal revision numbers on May 3, 2001, were 1.2, 1.7, and 2.48. On that day,
you package up a new release of the software and release it as SlickoSoft version 3. This is purely a
marketing decision and doesn’t affect the CVS revisions at all. The CVS revision numbers are invis-
ible to your customers (unless you give them repository access); the only publicly visible number is
the “3” in Version 3. You could have called it version 1,729 as far as CVS is concerned—the version
number (or “release” number) has nothing to do with CVS's internal change tracking.

To avoid confusion, we'll use the word “revision” to refer exclusively to the internal revision num-
bers of files under CVS control. We might still call CVS a “version control system,” however, be-
cause “revision control system” just sounds too awkward.

An Overview of CVS 45

In the example project that we’ve been using, we just committed changes to three files.
Each of those files is now revision 1.2, but the remaining files in the project are still revision
1.1. When you check out a project, you get each file at its highest revision so far. Here is
what gsmith would see if he checked out myproj right now and looked at the revision
numbers for the top-level directory:

paste$ cvs -q -d :pserver:gsmith@cvs.foobar.com:/usr/Tocal/cvs co myproj
U myproj/README.txt

U myproj/hello.c

U myproj/a-subdir/whatever.c

U myproj/a-subdir/subsubdir/fish.c

U myproj/b-subdir/random.c

paste$ cd myproj/CVsS

paste$ cat Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 2001//
/hello.c/1.2/Mon Apr 19 06:35:15 2001//
D/a-subdir////

D/b-subdir////

paste$

The file hello.c (among others) is now at revision 1.2, whereas README.txt is still at the
initial revision (revision 1.1.1.1, also known as 1.1).

If he adds the line

printf ("between hello and goodbye\n");
to hello.c and commits it, the file’s revision number will be incremented once more:

paste$ cvs ci -m "added new middle Tine"
cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir
cvs commit: Examining b-subdir

Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <-- hello.c
new revision: 1.3; previous revision: 1.2
done

paste$

Now hello.c is revision 1.3, fish.c and random.c still are revision 1.2, and every other file is
revision 1.1.

Tip

The command was given as cvs ci instead of cvs commit. Most CVS commands have
short forms, to make typing easier. For the checkout, update, and commit com-
mands, the abbreviated versions are co, up, and ci, respectively. You can get a list of
all of the short forms by running the command cvs— help-synonyms.

46 Chapter 2

You can usually ignore a file’s revision number. In most situations, the numbers are just
internal bookkeeping that CVS handles automatically. However, being able to find and
compare revision numbers is extremely handy when you have to retrieve (or use the diff
command against) an earlier copy of a file.

Examining the Entries file isn’t the only way to discover a revision number. You can also use

the status command

paste$ cvs status hello.c

File: hello.c

Working revision:
Repository revision:
Sticky Tag:

Sticky Date:

Sticky Options:

Status: Up-to-date

1.3
1.3
(none)
(none)
(none)

Tue Apr 20 02:34:42 2001
/usr/local/cvs/myproj/hello.c,v

which, if invoked without any files being named, shows the status of every file in the project:

paste$ cvs status
cvs status: Examining.

File: README.txt Status: Up-to-date
Working revision: 1.1.1.1 Sun Apr 18 18:18:22 2001
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/README.txt,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

File: hello.c Status: Up-to-date
Working revision: 1.3 Tue Apr 20 02:34:42 2001
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining a-subdir

File: whatever.c Status: Up-to-date
Working revision: 1.1.1.1 Sun Apr 18 18:18:22 2001

Repository revision: 1.1.1.1

/usr/local/cvs/myproj/a-subdir/whatever.c,v

An Overview of CVS
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining a-subdir/subsubdir

File: fish.c Status: Up-to-date
Working revision: 1.2 Mon Apr 19 06:35:27 2001
Repository revision: 1.2 /usr/local/cvs/myproj/
a-subdir/subsubdir/fish.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining b-subdir

File: random.c Status: Up-to-date
Working revision: 1.2 Mon Apr 19 06:35:27 2001
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
paste$

Just ignore the parts of that output that you don’t understand. In fact, that’s generally good
advice with CVS. Often, the one little bit of information you’re looking for will be accom-
panied by reams of information that you don’t care about at all, and maybe don’t even
understand. This situation is normal. Just pick out what you need, and don’t worry about
the rest.

In the previous example, the parts we care about are the first three lines (not counting the
blank line) of each file’s status output. The first line is the most important; it tells you the
file’s name and its status in the working copy. All of the files are currently in sync with the
repository, so they all say Up-to-date. However, if random.c has been modified but not
committed, it might read like this:

File: random.c Status: Locally Modified
Working revision: 1.2 Mon Apr 19 06:35:27 2001
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v

Sticky Tag: (none)

47

48 Chapter 2

Sticky Date: (none)
Sticky Options: (none)

The Working revision and Repository revision tell you whether the file is out of sync with
the repository. Returning to our original working copy (jrandom’s copy, which hasn’t seen
the new change to hello.c yet), we see:

yarkon$ cvs status hello.c

File: hello.c Status: Needs Patch
Working revision: 1.2 Mon Apr 19 02:17:07 2001
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

yarkon$

This tells us that someone has committed a change to hello.c, bringing the repository copy
to revision 1.3, but that this working copy is still on revision 1.2. The line Status: Needs
Patch means that the next update command will retrieve those changes from the repository
and patch them into the working copy’s file.

Let’s pretend for the moment that we don’t know anything about gsmith’s change to hello.c,
so we don’t run status or update. Instead, we just start editing the file, making a slightly
different change at the same location. This brings us to our first conflict.

Detecting and Resolving Conflicts

Detecting a conflict is easy enough. When you run update, CVS tells you, in no uncertain
terms, that there’s a conflict. But first, let’s create the conflict. We edit hello.c to insert the
line

printf ("this change will conflict\n");
right where gsmith committed this:

printf ("between hello and goodbye\n");

At this point, the status of our copy of hello.c is

yarkon$ cvs status hello.c

File: hello.c Status: Needs Merge

An Overview of CVS
Working revision: 1.2 Mon Apr 19 02:17:07 2001
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
yarkon$

meaning that there are changes both in the repository and the working copy, and these
changes need to be merged. (CVS isn’t aware that the changes will conflict, because we
haven’t run update yet.) When we do the update, we see this:

yarkon$ cvs update hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into hello.c
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in hello.c

C hello.c

yarkon$

The last line of output is the giveaway. The C in the left margin next to the file name
indicates that although changes have been merged, they conflict. The contents of hello.c
now show both changes:

#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
<<KKKKKK hello.c
printf ("this change will conflict\n");

printf ("between hello and goodbye\n");
DO5555> 1.3
printf ("Goodbye, world!\n");

Conflicts are always shown delimited by conflict markers, in the following format:

<KLLKLL (filename)
the uncommitted changes in the working copy
blah blah blah

49

50 Chapter2

the new changes that came from the repository
blah blah blah
and so on

>>>>>>> (latest revision number in the repository)

The Entries file also shows that the file is in a halfway state at the moment:

yarkon$ cat CVS/Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 2001//
D/a-subdir////

D/b-subdir////

/hello.c/1.3/Result of merge+Tue Apr 20 03:59:09 2001//
yarkon$

The way to resolve the conflict is to edit the file so that it contains whatever text is appro-
priate, removing the conflict markers in the process, and then to use the commit command.
This doesn’t necessarily mean choosing one change over another; you could decide neither
change is sufficient and completely rewrite the conflicting section (or indeed the whole
file). In this case, we’ll adjust in favor of the first change, but with capitalization and punc-
tuation slightly different from gsmith’s:

yarkon$ emacs hello.c
(make the edits...)

yarkon$ cat hello.c

#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");
}
yarkon$ cvs ci -m "adjusted middle Tine"
cvs commit: Examining .
cvs commit: Examining a-subdir
cvs commit: Examining a-subdir/subsubdir
cvs commit: Examining b-subdir
Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.4; previous revision: 1.3
done
yarkon$

An Overview of CVS 51

Finding Out Who Did What (Browsing Log Messages)

By now, the project has undergone several changes. If you're trying to get an overview of
what has happened so far, you don’t necessarily want to examine every diff in detail. Brows-
ing the log messages would be ideal, and you can accomplish this with the log command:

yarkon$ cvs log
(pages upon pages of output omitted)

The log output tends to be a bit verbose. Let’s look at the log messages for just one file:

yarkon$ cvs log hello.c
RCS file: /usr/Tocal/cvs/myproj/hello.c,v
Working file: hello.c
head: 1.4
branch:
locks: strict
access Tist:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:
revision 1.4
date: 2001/04/20 04:14:37; author: jrandom; state: Exp; Tines: +1 -1
adjusted middle Tine
revision 1.3
date: 2001/04/20 02:30:05; author: gsmith; state: Exp; Tines: +1 -0
added new middle Tine
revision 1.2
date: 2001/04/19 06:35:15; author: jrandom; state: Exp; Tines: +1 -0
print goodbye too
revision 1.1
date: 2001/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;
Initial revision
revision 1.1.1.1
date: 2001/04/18 18:18:22; author: jrandom; state: Exp; Tines: +0 -0
initial import into CVS

yarkon$

52 Chapter 2

As usual, there’s a lot of information at the top that you can just ignore. The good stuff
comes after each line of dashes, in a format that is self-explanatory.

When many files are sent in the same commit command, they all share the same log mes-
sage—a fact that can be useful in tracing changes. For example, remember when we
committed fish.c and random.c simultaneously? It was done like this:

yarkon$ cvs commit -m "filled out C code"

Checking in a-subdir/subsubdir/fish.c;
/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v <- fish.c
new revision: 1.2; previous revision: 1.1

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <- random.c

new revision: 1.2; previous revision: 1.1

done

yarkon$

The effect of this was to commit both files with the same log message: “Filled out C code.”
(As it happened, both files started at revision 1.1 and went to 1.2, but that’s just a coinci-
dence. If random.c had been at revision 1.29, it would have moved to 1.30 with this commit,
and its revision 1.30 would have had the same log message as fish.c’s revision 1.2.)

When you run cvs log on both files, you'll see the shared message:
yarkon$ cvs log a-subdir/subsubdir/fish.c b-subdir/random.c

RCS file: /usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
Working file: a-subdir/subsubdir/fish.c
head: 1.2
branch:
locks: strict
access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:
revision 1.2
date: 2001/04/19 06:35:27; author: jrandom; state: Exp; 1lines: +8 -1
filled out C code

revision 1.1

date: 2001/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;

Initial revision

revision 1.1.1.1

date: 2001/04/18 18:18:22; author: jrandom; state: Exp;
initial import into CVS

An Overview of CVS

lines: +0 -0

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
Working file: b-subdir/random.c
head: 1.2
branch:
locks: strict
access Tlist:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:
revision 1.2
date: 2001/04/19 06:35:27; author: jrandom; state: Exp;
filled out C code
revision 1.1
date: 2001/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;
Initial revision
revision 1.1.1.1
date: 2001/04/18 18:18:22; author: jrandom; state: Exp;
initial import into CVS

lines: +8 -1

lines: +0 -0

yarkon$

From this output, you'll know that the two revisions were part of the same commit (the fact
that the timestamps on the two revisions are the same, or very close, is further evidence).

Browsing log messages is a good way to get a quick overview of what'’s been going on in a

project or to find out what happened to a specific file at a certain time. There are also free
tools available to convert raw cvs log output to more concise and readable formats (such as
GNU-style Changelog). We don’t cover those tools in this tour, but they are introduced in

Chapter 10.

53

54 Chapter 2

Examining and Reverting Changes

Suppose that, in the course of browsing the logs, gsmith sees that jrandom made the most
recent change to hello.c

revision 1.4
date: 2001/04/20 04:14:37; author: jrandom; state: Exp; Tines: +1 -1
adjusted middle Tine

and wonders what jrandom did. In formal terms, the question that gsmith is asking is, “What's
the difference between my revision (1.3) of hello.c, and jrandom’s revision right after it
(1.4)?” The way to find out is with the diff command with the -r command option to specify
both of them:

paste$ cvs diff -c -r 1.3 -r 1.4 hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.3

retrieving revision 1.4

diff -¢ -rl.3 -rl.4

*** hello.c 2001/04/20 02:30:05 1.3
--- hello.c 2001/04/20 04:14:37 1.4
kkkkkkkkhkkkkkkkk

*k*k 4,9 *kkk

main ()
{
printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
}
- 4,9 - -
main ()
{
printf ("Hello, world!\n");
! printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");
}
paste$

When viewed this way, the change is pretty clear. Because the revision numbers are given in
chronological order (usually a good idea), the diff shows them in order. If only one revision
number is given, CVS uses the revision of the current working copy for the other.

When gsmith sees this change, he instantly decides he likes his way better and resolves to
“undo”—that is, to step back by one revision. However, this doesn’t mean that he wants to
lose his revision 1.4. Although, in an absolute technical sense, it’s probably possible to

An Overview of CVS 55

achieve that effect in CVS, there’s almost never any reason to do so. It’s preferable to keep
revision 1.4 in the history and make a new revision 1.5 that looks exactly like 1.3. That way
the undo event itself is part of the file’s history. The only question is, how can you retrieve
the contents of revision 1.3 and put them into 1.5?

In this particular case, the change is a very simple one, so gsmith can probably just edit the
file by hand to mirror revision 1.3 and then use the commit command. However, if the
changes are more complex (as they usually are in a real-life project), trying to re-create the
old revision manually will be hopelessly error-prone. Therefore, we’ll have gsmith use CVS
to retrieve and recommit the older revision’s contents.

There are two equally good ways to do this: the slow, plodding way and the fast, fancy way.
We’ll examine the slow, plodding way first.

The Slow Method of Reverting

This method involves passing the -p flag to update, in conjunction with -r. The -p option
sends the contents of the named revision to standard output. By itself, this isn’t terribly
helpful; the contents of the file fly by on the display, leaving the working copy unchanged.
However, if you redirect the standard output into the file, the file will hold the contents of
the older revision. It’s as if the file had been hand-edited into that state.

First, though, gsmith needs to get up to date with respect to the repository:

paste$ cvs update

cvs update: Updating .

U hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

paste$ cat hello.c

f#finclude <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("how are you?\n");
printf ("Goodbye, world!\n");

}

paste$

Next, he runs update -p to make sure that revision 1.3 is the one he wants:

paste$ cvs update -p -r 1.3 hello.c

Checking out hello.c
RCS: /usr/Tocal/cvs/myproj/hello.c,v
VERS: 1.3

56 Chapter2

*khkkkkkkhkkkkhkkkhkkkhkk

#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

Oops, there are a few lines of chaff at the beginning. They aren’t actually being sent to
standard output, but rather to standard error, so they’re harmless. Nevertheless, they make
reading the output more difficult and can be suppressed with -Q:

paste$ cvs -Q update -p -r 1.3 hello.c
f#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}

paste$

There—that’s exactly what gsmith was hoping to retrieve. The next step is to put that
content into the working copy'’s file, using a Unix redirect (that’s what the “>” does):

paste$ cvs -Q update -p -r 1.3 hello.c > hello.c
paste$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir

cvs update: Updating b-subdir

paste$

Now when update is run, the file is listed as modified, which makes sense because its con-
tents have changed. Specifically, it has the same content as the old revision 1.3 (not that
CVS is aware of its being identical to a previous revision—it just knows the file has been
modified). If gsmith wants to make extra sure, he can run the diff command to check:

paste$ cvs -Q diff -c
Index: hello.c

An Overview of CVS

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.4
diff -c -rl.4 hello.c

*** hello.c 2001/04/20 04:14:37 1.4
--- hello.c 2001/04/20 06:02:25
*kkkkkkkkhkkkkkkkk

*kk 4,9 *kkk

main ()
{
printf ("Hello, world!\n");
! printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");

}
- 4,9 - -
main ()
{
printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
}
paste$

Yes, that’s exactly what he wanted: a pure reversion—in fact, it is the reverse of the diff he
previously obtained. Satisfied, he commits:

paste$ cvs ci -m "reverted to 1.3 code"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.5; previous revision: 1.4
done

paste$

The Fast Method of Reverting

The fast, fancy way of updating is to use the -j (for “join”) flag with the update command.
This flag is like -r in that it takes a revision number, and you can use up to two -j’s at once.
CVS calculates the difference between the two named revisions and applies that difference
as a patch to the file in question (so the order in which you give the revisions is important).

Thus, assuming gsmith’s copy is up to date, he can just do this:

paste$ cvs update -j 1.4 -j 1.3 hello.c
RCS file: /usr/Tocal/cvs/myproj/hello.c,v

57

58 Chapter2

retrieving revision 1.4

retrieving revision 1.3

Merging differences between 1.4 and 1.3 into hello.c
paste$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir

cvs update: Updating b-subdir

paste$ cvs ci -m "reverted to 1.3 code” hello.c
Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <-- hello.c
new revision: 1.5; previous revision: 1.4
done

paste$

When you need to revert only one file, there’s not really much difference between the
plodding and fast methods. Later in the book, you'll see how the fast method is much better
for reverting multiple files at once. In the meantime, use whichever way you’re more com-
fortable with.

Other Useful CVS Commands

At this point, you should be pretty comfortable with basic CVS operation. We’ll abandon
the tour narrative and introduce a few more useful commands in summarized form.

Adding Files
Adding a file is a two-step process: First you run the add command on it, then you run
commit. The file won’t actually appear in the repository until commit is run:

Reverting Is Not a Substitute for Communication

In all likelihood, what gsmith did in our example was quite rude. When you’re working on a real
project with other people and you think that someone has committed a bad change, the first thing
you should do is talk to him or her about it. Maybe there’s a good reason for the change, or maybe he
or she just didn’t think things through. Either way, there’s no reason to rush and revert. A full record
of everything that happens is stored permanently in CVS, so you can always revert to a previous
revision after consulting with whoever made the changes.

If you're a project maintainer facing a deadline or you feel you have the right and the need to revert
the change unconditionally, then do so—but follow it immediately with an email to the author
whose change was reverted, explaining why you did it and what needs to be fixed to recommit the
change.

An Overview of CVS

yarkon$ cvs add newfile.c

cvs add: scheduling file 'newfile.c' for addition
cvs add: use 'cvs commit' to add this file permanently
yarkon$ cvs ci -m "added newfile.c" newfile.c

RCS file: /usr/local/cvs/myproj/newfile.c,v

done

Checking in newfile.c;
/usr/local/cvs/myproj/newfile.c,v <= newfile.c
initial revision: 1.1

done

yarkon$

Adding Directories

Unlike adding a file, adding a new directory is done in one step; there’s no need to run
commit afterward:

yarkon$ mkdir c-subdir

yarkon$ cvs add c-subdir

Directory /usr/local/cvs/myproj/c-subdir added to the repository
yarkon$

If you look inside the new directory in the working copy, you'll see that a CVS subdirectory
was created automatically by the add command:

yarkon$ 1s c-subdir

CvVsS/

yarkon$ 1s c-subdir/CVS
Entries Repository Root
yarkon$

Now you can add files (or new directories) inside it, as with any other working copy
directory.

Removing Files

Removing a file is similar to adding one, except there’s an extra step: You have to remove
the file from the working copy first:

yarkon$ rm newfile.c

yarkon$ cvs remove newfile.c

cvs remove: scheduling 'newfile.c' for removal

cvs remove: use 'cvs commit' to remove this file permanently
yarkon$ cvs ci -m "removed newfile.c" newfile.c

Removing newfile.c;

/usr/local/cvs/myproj/newfile.c,v <- newfile.c

59

60 Chapter 2

CVS and Binary Files

Until now, we've left unexposed the dirty little secret of CVS, which is that it doesn’t handle binary
files very well. It's not that CVS doesn’t handle binaries at all—it does, just not very well.

All the files we've been working with until now have been plain text files. CVS has some special
tricks for text files. For example, when it’s working between a Unix repository and a Windows or
Macintosh working copy, it converts file line endings appropriately for each platform. For example,
Unix convention is to use a linefeed (LF) only, whereas Windows expects a carriage return/linefeed
(CRLF) sequence at the end of each line. Thus, the files in a working copy on a Windows machine
have CRLF endings, but the files in a working copy of the same project on a Unix machine have LF
endings (the repository itself is always stored in LF format).

Another trick is that CVS detects special strings, known as RCS keyword strings, in text files and replaces
them with revision information and other useful things. For example, if your file contains this string

$Revision$

CVS will expand on each commit to include the revision number. For example, it might get expanded to:

$Revision: 1.3 §$

CVS will keep that string up to date as the file is developed. (The various keyword strings are
documented in Chapters 4 and 11.)

This string expansion is a very useful feature in text files, because it allows you to see the revision
number or other information about a file while you're editing it. But what if the file is a JPEG image
(with a JPG extension)? Or a compiled executable program? In those kinds of files, CVS could do
some serious damage if it blundered around expanding any keyword string that it encountered. In a
binary, such strings can even appear by coincidence.

Therefore, when you add a binary file, you have to tell CVS to turn off both keyword expansion and
line-ending conversion. To do so, use -kb:

yarkon$ cvs add -kb filename
yarkon$ cvs ci -m "added blah" filename
(etc)

Also, in some cases (such as text files that are likely to contain spurious keyword strings), you might
want to disable just the keyword expansion. That’s done with -ko:

yarkon$ cvs add -ko filename
yarkon$ cvs ci -m "added blah" filename
(etc)

(In fact, this chapter is one such document, because of the “$Revision$” example shown here.)

Note that you can’t meaningfully run cvs diff on two revisions of a binary file. The diff command
uses a text-based algorithm that can report only whether two binary files differ, but not how they
differ. Future versions of CVS might provide a way to run diff on binary files.

An Overview of CVS 61

new revision: delete; previous revision: 1.1
done
yarkon$

Notice that, in the second and third commands, we name newfile.c explicitly even though
it doesn’t exist in the working copy anymore. Of course, in the commit, you don’t absolutely
need to name the file, as long as you don’t mind the commit encompassing any other modi-
fications that might have taken place in the working copy.

Removing Directories

As we said before, CVS doesn’t really keep directories under version control. Instead, as a
kind of cheap substitute, it offers certain odd behaviors that in most cases do the “right
thing.” One of these odd behaviors is that empty directories can be treated specially. If you
want to remove a directory from a project, you first remove all the files in it

yarkon$ cd dir

yarkon$ rm filel file2 file3

yarkon$ cvs remove filel file2 file3
(output omitted)

yarkon$ cvs ci -m "removed all files"™ filel file2 file3
(output omitted)

and then run update in the directory above it with the -P flag:

yarkon$ cd ..
yarkon$ cvs update -P
(output omitted)

The -P option tells update to “prune” any empty directories—that is, to remove them from
the working copy. Once that’s done, the directory is said to have been removed; all of its
files are gone, and the directory itself is gone (from the working copy, at least, although
there is actually still an empty directory in the repository).

An interesting counterpart to this behavior is that when you run a plain update, CVS does
not automatically bring new directories from the repository into your working copy. There
are a couple of different justifications for this, none really worth going into here. The short
answer is that from time to time you should run update with the -d flag, telling it to bring
down any new directories from the repository.

Renaming Files and Directories

Renaming a file is equivalent to creating it under the new name and removing it under the
old. In Unix, the commands are:

yarkon$ cp oldname newname

yarkon$ rm oldname

62 Chapter 2

Here’s the equivalent in CVS:

yarkon$ mv oldname newname
yarkon$ cvs remove oldname
(output omitted)
yarkon$ cvs add newname
(output omitted)

yarkon$ cvs ci

(output omitted)

yarkon$

For files, that’s all there is to it. Renaming directories is not done very differently: Create
the new directory, cvs add it, move all the files from the old directory to the new one, cvs
remove them from the old directory, cvs add them in the new one, cvs commit so every-
thing takes effect, and then do cvs update -P to make the now-empty directory disappear

-m "renamed oldname to newname" oldname newname

from the working copy. That is to say:

yarkon$ mkdir newdir

yarkon$ cvs add newdir

yarkon$ mv olddir/* newdir

mv: newdir/CVS: cannot overwrite directory
cd olddir
rm foo.c bar.txt

yarkon$
yarkon$
yarkon$
yarkon$
yarkon$
yarkon$
yarkon$

cvs
cd
cvs

../newdir
add foo.c

cd ..

Cvs
Cvs

The warning message after the third command is telling you that it can’t copy

olddir’s CVS/ subdirectory into newdir because newdir already has a directory of

commit -m
update -P

bar.txt

"moved foo.c and bar.txt from olddir to newdir"

that name. This is fine, because you want olddir to keep its CVS/ subdirectory.

Obviously, moving directories around can get a bit difficult. The best policy is to try to
come up with a good layout when you initially import your project so you won’t have to
move directories around very often. Later, you'll learn about a more drastic method of mov-
ing directories that involves making the change directly in the repository. However, that
method is best saved for emergencies; whenever possible, it’s best to handle everything with

CVS operations inside working copies.

An Overview of CVS

Avoiding Option Fatigue

Most people tire pretty quickly of typing the same option flags with every command. If you
know that you always want to pass the -Q global option or you always want to use -c with
diff, why should you have to type it out each time?

There is help, fortunately. CVS looks for a .cvsrc file in your home directory. In that file,
you can specify default options to apply to every invocation of CVS. Here’s an example
.cvsrC:

diff -c
update -P
cvs -q

If the leftmost word on a line matches a CVS command (in its unabbreviated form), the
corresponding options are used for that command every time. For global options, you just
use cvs. So, for example, every time this particular user runs cvs diff, the -c flag is automati-
cally included.

Getting Snapshots (Dates and Tagging)

Let’s return to the example of the program that’s in a broken state when a bug report comes
in. The developer suddenly needs access to the entire project as it was at the time of the last
release, even though many files might have been changed since then, and each file’s revi-
sion number differs from the others. It would be far too time-consuming to look over the log
messages, figure out what each file’s individual revision number was at the time of release,
and then run update (specifying a revision number with -r) on each one of them. In me-
dium- to large-sized projects (tens to hundreds of files), such a process would be too unwieldy
to attempt.

CVS, therefore, provides a way to retrieve previous revisions of the project files en masse. In
fact, it provides two ways: by date, which selects the revisions based on the time that they
were committed, and by tag, which retrieves a previously marked “snapshot” of the project.

Which method you use depends on the situation. The date-based retrievals are done by
passing update the -D flag, which is similar to -r but takes dates instead of revision numbers:

yarkon$ cvs -q update -D "2001-04-19"
U hello.c

U a-subdir/subsubdir/fish.c

U b-subdir/random.c

yarkon$

With the -D option, update retrieves the highest revision of each file as of the given date,
and it will revert the files in the working copy to prior revisions if necessary.

63

64 Chapter 2

When you give the date, you can—and often should—include the time. For example, the
previous command ended up retrieving revision 1.1 of everything (only three files showed
changes, because all of the others are still at revision 1.1 anyway). Here’s the status of
hello.c to prove it:

yarkon$ cvs -Q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.1.1.1 Sat Apr 24 22:45:03 2001
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/hello.c,v
Sticky Date: 99.04.19.05.00.00

yarkon$

However, a glance back at the log messages from earlier in this chapter shows that revision
1.2 of hello.c was definitely committed on April 19, 2001. So why did we now get revision
1.1 instead of 1.27

The problem is that the date “2001-04-19” was interpreted as meaning “the midnight that
begins 2001-04-19”—that is, the very first instant on that date. This is probably not what
you want. The 1.2 commit took place later in the day. By qualifying the date more precisely,
we can retrieve revision 1.2:

yarkon$ cvs -q update -D "2001-04-19 23:59:59"
U hello.c

U a-subdir/subsubdir/fish.c

U b-subdir/random.c

yarkon$ cvs status hello.c

File: hello.c Status: Locally Modified
Working revision: 1.2 Sat Apr 24 22:45:22 2001
Repository revision: 1.2 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: 99.04.20.04.59.59
Sticky Options: (none)
yarkon$

We’re almost there. If you look closely at the date/time on the Sticky Date line, it seems to
indicate 4:59:59 A.M., not 11:59 as the command requested (later we’ll get to what the
“sticky” means). As you might have guessed, the discrepancy is due to the difference be-
tween local time and Universal Coordinated Time (also known as Greenwich Mean Time).
The repository always stores dates in Universal Time, but CVS on the client side usually
assumes the local system time zone. In the case of -D, this is rather unfortunate because
you're probably most interested in comparing against the repository time and don’t care
about the local system’s idea of time. You can get around this by specifying the GMT zone in
the command:

An Overview of CVS

yarkon$ cvs -q update -D "2001-04-19 23:59:59 GMT"
U hello.c
yarkon$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.2 Sun Apr 25 22:38:53 2001
Repository revision: 1.2 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: 99.04.19.23.59.59
Sticky Options: (none)
yarkon$

There—that brought the working copy back to the final commits from April 19 (unless
there were any commits during the last second of the day, which there weren’t).

What happens now if you run update?

yarkon$ cvs update

cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

yarkon$

Nothing happens at all. However, you know that there are more recent versions of at least
three files. Why aren’t these included in your working copy?

That’s where the “sticky” comes in. Updating with the -D flag causes the working copy to
be restricted permanently to that date or before. In CVS terminology, the working copy has
a “sticky date” set. Once a working copy has acquired a sticky property, it stays sticky until
told otherwise. Therefore, subsequent updates will not automatically retrieve the most re-
cent revision. Instead, they’ll stay restricted to the sticky date. Stickiness can be revealed by
running cvs status or by directly examining the CVS/Entries file:

yarkon$ cvs -q update -D "2001-04-19 23:59:59 GMT"

U hello.c

yarkon$ cat CVS/Entries

D/a-subdir////

D/b-subdir////

D/c-subdir////

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 2001//D99.04.19.23.59.59
/hello.c/1.2/Sun Apr 25 23:07:29 2001//D99.04.19.23.59.59
yarkon$

If you were to modify hello.c and then try to run commit

65

66 Chapter 2

yarkon$ cvs update

M hello.c

yarkon$ cvs ci -m "trying to change the past"

cvs commit: cannot commit with sticky date for file 'hello.c'
cvs [commit aborted]: correct above errors first!

yarkon$

CVS would not permit the commit to happen because that would be like allowing you to go
back and change the past. CVS is all about record keeping and, therefore, will not allow you
to do that.

This does not mean CVS is unaware of all the revisions that have been committed since
that date, however. You can still compare the sticky-dated working copy against other revi-
sions, including future ones:

yarkon$ cvs -q diff -c -r 1.5 hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5
diff -c -rl.5 hello.c

*** hello.c 2001/04/24 22:09:27 1.5
--- hello.c 2001/04/25 00:08:44
Kokkk ok ke ok ke ok ok ok ok ok ko

* k% 3,9 *k k%
void
main ()
{
printf ("Hello, world!\n");
- printf ("how are you?\n");
printf ("Goodbye, world!\n");
}
- 3,9 -
void
main ()
{
+ /* this line was added to a downdated working copy */
printf ("Hello, world!\n");
printf ("Goodbye, world!\n");

This diff reveals that, as of April 19, 2001, the how are you? line had not yet been added. It
also shows the modification that we made to the working copy (adding the comment shown
in the preceding code snippet).

You can remove a sticky date (or any sticky property) by updating with the -A flag (-A
stands for “reset,” don’t ask us why), which brings the working copy back to the most recent
revisions:

An Overview of CVS 67

yarkon$ cvs -q update -A
U hello.c
yarkon$ cvs status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Sun Apr 25 22:50:27 2001
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
yarkon$

Acceptable Date Formats

CVS accepts a wide range of syntax to specify dates. You'll never go wrong if you use [SO
8601 format (that is, the International Organization for Standardization (ISO) standard
#8601; see also www.saqqara.demon.co.uk/datefmt.htm), which is the format used in the
preceding examples. You can also use Internet email dates as described in RFC 822 and
RFC 1123 (see www.rfc-editor.org/rfc/). Finally, you can use certain unambiguous English
constructs to specify dates relative to the current date.

You will probably never need all of the formats available, but here are some more examples
to give you an idea of what CVS accepts:

yarkon$ cvs update -D "19 Apr 2001"

yarkon$ cvs update -D "19 Apr 2001 20:05"
yarkon$ cvs update -D "19/04/2001"

yarkon$ cvs update -D "3 days ago"

yarkon$ cvs update -D "5 years ago"

yarkon$ cvs update -D "19 Apr 2001 23:59:59 GMT"
yarkon$ cvs update -D "19 Apr"

The double quotes around the dates are there to ensure that the Unix shell treats the date as
one argument even if it contains spaces. The quotes will do no harm if the date doesn’t
contain spaces, so it’s probably best to always use them.

Marking a Moment in Time (Tags)

Retrieving by date is useful when the mere passage of time is your main concern. However,
more often what you really want to do is retrieve the project as it was at the time of a specific
event—perhaps a public release, a known stable point in the software’s development, or the
addition or removal of some major feature.

Trying to remember the date when that event took place or deducing the date from log
messages would be a tedious process. Presumably, the event, because it was important, was
marked as such in the formal revision history. The method CVS offers for making such
marks is known as tagging.

68 Chapter 2

Tags differ from commits in that they don’t record any particular textual change to files, but
rather a change in the developers’ attitude about the files. A tag gives a label to the collec-
tion of revisions represented by one developer’s working copy (usually, that working copy is
completely up to date so the tag name is attached to the “latest and greatest” revisions in
the repository).

Setting a tag is as simple as this:

yarkon$ cvs -q tag Release-2001_05_01
README. txt

hello.c

a-subdir/whatever.c
a-subdir/subsubdir/fish.c
b-subdir/random.c

yarkon$

— = = =

That command associates the symbolic name “Release-2001_05_01” with the snapshot rep-
resented by this working copy. Or in other words, snapshot means a set of files and associated
revision numbers from the project. Those revision numbers do not have to be the same from
file to file and, in fact, usually aren’t. For example, assuming that tag was done on the same
myproj directory that we've been using throughout this chapter and that the working copy
was completely up to date, the symbolic name “Release-2001_05_01” will be attached to
hello.c at revision 1.5, to fish.c at revision 1.2, to random.c at revision 1.2, and to every-
thing else at revision 1.1.

It might help to visualize a tag as a path or string linking various revisions of files in the
project. In Figure 2.1, an imaginary string passes through the tagged revision number of
each file in a project.

If you pull the string taut and sight directly along it, you'll see a particular moment in the
project’s history—namely, the moment that the tag was set (Figure 2.2).

As you continue to edit files and commit changes, the tag will not move along with the
increasing revision numbers. It stays fixed, “stickily,” at the revision number of each file at
the time the tag was made.

Given their importance as descriptors, it’s a bit unfortunate that log messages can’t be in-
cluded with tags or that the tags themselves can’t be full paragraphs of prose. In the preceding
example, the tag is fairly obviously stating that the project was in a releasable state as of a
certain date. However, sometimes you might want to make snapshots of a more complex
state, which can result in ungainly tag names such as:

yarkon$ cvs tag testing-release-3_pre-20010525-public-release

As a general rule, you should try to keep tags as terse as possible while still including all
necessary information about the event that you're trying to record. When in doubt, err on

An Overview of CVS 69

File A File B File C File D File E
1.1 1.1 1.1 1.1 1.1
—1.2 1.2 1.2 1.2 1.2
1.3 1.3 1.3 1.3 1.3
1.4 1.4 1.4 1.4
1.5 1.5 1.5 1.5
1.6 1.6 1.6 1.6
1.7 1.7 1.7
1.8 1.8 1.8—
1.9 1.9 1.9
1.10 1.10 1.10
1.11 1.11
1.12
1.13
1.14
1.15
1.16
1.17
Figure 2.1
How a tag might stand in relation to a project’s revision history.
File A File B File C File D File E
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.1 1.8
1.2 1.9
1.3 1.10 1.1
1.4 1.11 1.2
1.5 1.12 1.3
1.6 1.13 1.4
1.7 1.1 1.14 1.5
1.8 1.2 1.15 1.6
1.1 1.9 1.3 1.16 1.7
—1.2 1.10 1.4 1.17 1.8—
1.3 1.11 1.5 1.9
1.6 1.10
Figure 2.2

The tag is a “straight sight” through a revision history.

70 Chapter 2

the side of being overly descriptive—you’ll be glad later when you're able to tell from some
verbose tag name exactly what circumstance was recorded.

You've probably noticed that no periods or spaces were used in the tag names. CVS is rather
strict about what constitutes a valid tag name. The rules are that it must start with a letter
and contain letters, digits, hyphens (“-”), and underscores (“_"). No spaces, periods, colons,
commas, or any other symbols may be used.

To retrieve a snapshot by tag name, the tag name is used just like a revision number. There
are two ways to retrieve snapshots: You can check out a new working copy with a certain
tag, or you can switch an existing working copy over to a tag. Both result in a working copy
whose files are at the revisions specified by the tag.

Most of the time, what you are really trying to do is take a look at the project as it was at the
time of the snapshot. You might not necessarily want to do this in your main working copy,
where you presumably have uncommitted changes and other useful states built up, so let’s
assume you just want to check out a separate working copy with the tag. Here’s how (but
make sure to invoke this somewhere other than in your existing working copy or its parent
directory!):

yarkon$ cvs checkout -r Release-2001_05_01 myproj
cvs checkout: Updating myproj

U myproj/README.txt

U myproj/hello.c

cvs checkout: Updating myproj/a-subdir

U myproj/a-subdir/whatever.c

cvs checkout: Updating myproj/a-subdir/subsubdir
U myproj/a-subdir/subsubdir/fish.c

cvs checkout: Updating myproj/b-subdir

U myproj/b-subdir/random.c

cvs checkout: Updating myproj/c-subdir

We've seen the -r option before in the update command, where it preceded a revision
number. In many ways, a tag is just like a revision number because, for any file, a given tag
corresponds to exactly one revision number (it’s illegal, and generally impossible, to have
two tags of the same name in the same project). In fact, anywhere you can use a revision
number as part of a CVS command, you can use a tag name instead (as long as the tag has
been set previously). If you want to compare a file’s current state against its state at the time
of the last release, you can use the diff command to do this:

yarkon$ cvs diff -c -r Release-2001_05_01 hello.c
And if you want to revert it temporarily to that revision, you can do this:

yarkon$ cvs update -r Release-2001_05_01 hello.c

An Overview of CVS

The interchangeability of tags and revision numbers explains some of the strict rules about
valid tag names. Imagine if periods were legal in tag names; you could have a tag named
“1.3” attached to an actual revision number of “1.47.” If you then issued the command

yarkon$ cvs update -r 1.3 hello.c

how would CVS know whether you were referring to the tag named “1.3,” or the much
earlier revision 1.3 of hello.c? Thus, restrictions are placed on tag names so that they can
always be distinguished easily from revision numbers. A revision number has a period; a tag
name doesn’t. (There are reasons for the other restrictions, too, mostly having to do with
making tag names easy for CVS to parse.)

As you’ve probably guessed by this point, the second method of retrieving a snapshot—that
is, switching an existing working directory over to the tagged revisions—is also done by
updating:

yarkon$ cvs update -r Release-2001_05_01
cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

cvs update: Updating c-subdir

yarkon$

The preceding command is just like the one we used to revert hello.c to Release-2001_05_01,
except that the file name is omitted because we want to revert the entire project over. (You
can, if you want, revert just one subtree of the project to the tag by invoking the preceding
command in that subtree instead of starting from the top level, although you hardly ever
would want to do that.)

Note that no files appear to have changed when we updated. The working copy was com-
pletely up to date when we tagged, and no changes had been committed since the tagging.

However, this does not mean that nothing changed at all. The working copy now knows
that it’s at a tagged revision. When you make a change and try to commit it (let’s assume we

modified hello.c):

yarkon$ cvs -q update

M hello.c

yarkon$ cvs -q ci -m "trying to commit from a working copy on a tag"

cvs commit: sticky tag 'Release-2001_05_01' for file 'hello.c' is not a branch
cvs [commit aborted]: correct above errors first!

yarkon$

CVS does not permit the commit to happen. (Don’t worry about the exact meaning of that
error message yet—we’ll cover branches next in this chapter.) It doesn’t matter whether the

71

72 Chapter 2

working copy got to be on a tag via a checkout or an update command. Once it is on a tag,
CVS views the working copy as a static snapshot of a moment in history, and CVS won’t let
you change history—at least not easily. If you run cvs status or look at the CVS/Entries
files, you'll see that there is a sticky tag set on each file. Here’s the top-level Entries file, for
example:

yarkon$ cat CVS/Entries

D/a-subdir////

D/b-subdir////

D/c-subdir////

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 2001//TRelease-2001_05_01
/hello.c/1.5/Tue Apr 20 07:24:10 2001//TRelease-2001_05_01
yarkon$

Tags, like other sticky properties, are removed with the -A flag to update:

yarkon$ cvs -q update -A
M hello.c
yarkon$

The modification to hello.c did not go away, however; CVS is still aware that the file changed
with respect to the repository:

yarkon$ cvs -q diff -c hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5

diff -c -rl.5 hello.c

*** hello.c 2001/04/20 06:12:56 1.5
--- hello.c 2001/05/04 20:09:17

*hkkhkkkkkhkhkkkkhkhkkk*k
* k% 6 s 9 *k k%
--- 6,10 --
printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
+ /* a comment on the last line */
}
yarkon$

Now that you've reset with update, CVS will accept a commit:

yarkon$ cvs ci -m "added comment to end of main function"
cvs commit: Examining .

An Overview of CVS

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

cvs commit: Examining c-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <= hello.c
new revision: 1.6; previous revision: 1.5
done

yarkon$

The tag “Release-2001_05_01" is still attached to revision 1.5, of course. Compare the file’s
status before and after a reversion to the tag:

yarkon$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.6 Tue May 4 20:09:17 2001
Repository revision: 1.6 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
yarkon$ cvs -q update -r Release-2001_05_01
U hello.c

yarkon$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Tue May 4 20:21:12 2001
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-2001_05_01 (revision: 1.5)
Sticky Date: (none)
Sticky Options: (none)

yarkon$

Now, having just told you that CVS doesn’t let you change history, we’ll show you how to
change history.

Branches

We've been viewing CVS as a kind of intelligent, coordinating library. So far, we've seen
only how you can examine the past with CVS, without affecting anything. However, CVS
also allows you to go back in time to change the past. What do you get then? A CVS branch
splits a project’s development into separate, parallel branches. Changes made on one branch
do not affect the other.

Why is this useful?

73

74 Chapter 2

Let’s return for a moment to the scenario of the developer who, in the midst of working on
anew version of the program, receives a bug report about an older released version. Assum-
ing the developer fixes the problem, she still needs a way to deliver the fix to the customer.
It won’t help to just find an old copy of the program somewhere, patch it up without CVS’s
knowledge, and ship it off. There would be no record of what was done; CVS would be
unaware of the fix, and if something was later discovered to be wrong with the patch, no
one would have a starting point for reproducing the problem.

It’s even more wrong to fix the bug in the current, unstable version of the sources and ship
that to the customer. Sure, the reported bug might be solved, but the rest of the code is in a
half-implemented, untested state. It might run, but it’s certainly not ready for prime time.

Because the last released version is thought to be stable, aside from this one bug, the ideal
solution is to go back and correct the bug in the old release—that is, to create an alternate
universe in which the last public release includes this bug fix.

That’s where branches come in. The developer splits off a branch, rooted in the main line of
development (the trunk) not at its most recent revisions, but back at the point of the last
release. Then he or she checks out a working copy of this branch, makes whatever changes
are necessary to fix the bug, and commits them on that branch, so there’s a record of the bug
fix. Now he or she can package up an interim release based on the branch and ship it to the
customer.

The change won't affect the code on the trunk, nor would the developer want it to without
first finding out whether the trunk needs the same bug fix or not. If it does, the developer
can use the merge command to merge the branch changes into the trunk. In a merge, CVS
calculates the changes made on the branch between the point where it diverged from the
trunk and the branch’s tip (its most recent state), then applies those differences to the project
at the tip of the trunk. The difference between the branch’s root and its tip works out, of
course, to be precisely the bug fix.

Another good way to think of a merge is as a special case of updating. The difference is that
in a merge, the changes to be incorporated are derived by comparing the branch’s root and
tip, instead of by comparing the working copy against the repository.

The act of updating is itself similar to receiving patches directly from the authors and apply-
ing them by hand. In fact, to run the update command, CVS calculates the difference
(that’s “difference” as in the diff program) between the working copy and the repository and
then applies that diff to the working copy just as the patch program would. This mirrors the
way in which a developer takes changes from the outside world, by manually applying patch
files sent in by contributors.

An Overview of CVS

Thus, merging the bug fix branch into the trunk is just like accepting some outside
contributor’s patch to fix the bug. The contributor would have made the patch against the
last released version, just as the branch’s changes are against that version. If that area of
code in the current sources hasn’t changed much since the last release, the merge will suc-
ceed with no problems. If the code is now substantially different, however, the merge will
fail with conflict (that is, the patch will be rejected), and some manual fiddling will be
necessary. Usually, this is accomplished by reading the conflicting area, making the neces-
sary changes by hand, and committing. Figure 2.3 shows a picture of what happens in a
branch and merge.

We'll now walk through the steps necessary to make this picture happen. Remember that
it’s not really time that’s flowing from left to right in the diagram, but the revision history.
The branch will not have been made at the time of the release, but is created later, rooted
back at the release’s revisions.

In our case, let’s assume the files in the project have gone through many revisions since they
were tagged as “Release-2001_05_01,” and perhaps files have been added as well. When the
bug report regarding the old release comes in, the first thing we’ll want to do is create a
branch rooted at the old release, which we conveniently tagged “Release-2001_05_01.”
One way to do this is to first check out a working copy based on that tag, then create the
branch by retagging with the -b (branch) option:

Somewhere in here,
the bug got fixed.

(Branch)y (merg g .. _Here, the branch was merged
(Tip of the Branch) “*+._into the trunk, incorporating
the bug fix into the current
%, sources.
X
» (Main Line of Development...)

Point of the last release, Release-2001_05_01,
and of the bug fix branch based on it.

Figure 2.3
Branching and merging.

75

76 Chapter 2

yarkon$ cd ..

yarkon$ 1s

myproj/

yarkon$ cvs -q checkout -d myproj_old_release -r Release-2001_05_01 myproj
U myproj_old_release/README.txt

U myproj_old_release/hello.c

U myproj_old_release/a-subdir/whatever.c

U myproj_old_release/a-subdir/subsubdir/fish.c

U myproj_old_release/b-subdir/random.c

yarkon$ 1s

myproj/ myproj_old_release/

yarkon$ cd myproj_old_release

yarkon$ 1s

CvsS/ README.txt a-subdir/ b-subdir/ hello.c

yarkon$ cvs -q tag -b Release-2001_05_01-bugfixes
T README.txt

hello.c

a-subdir/whatever.c

a-subdir/subsubdir/fish.c

b-subdir/random.c

yarkon$

— = —

Take a good look at that last command. It might seem somewhat arbitrary that tag is used to
create branches, but there’s actually a reason for it: The tag name will serve as a label by
which the branch can be retrieved later. Branch tags do not look any different from non-
branch tags, and they are subject to the same naming restrictions. Some people like to
always include the word branch in the tag name itself (for example, “Release-2001_05_01-
bugfix-branch”) so they can distinguish branch tags from other kinds of tags. You might
want to do this if you often find yourself retrieving the wrong tag.

(And while we’re at it, note the -d myproj_old_release option to checkout in the first CVS
command. This tells checkout to put the working copy in a directory called myproj_old_release,
so we won't confuse it with the current version in myproj. Be careful not to confuse this use of
-d with the global option of the same name, or with the -d option to update.)

Of course, merely running the tag command does not switch this working copy over to the
branch. Tagging never affects the working copy; it just records some extra information in
the repository to allow you to retrieve that working copy’s revisions later on (as a static
piece of history or as a branch, as the case may be).

Retrieval can be done one of two ways (you’re probably getting used to this motif by now).
You can check out a new working copy on the branch

yarkon$ pwd
/home/whatever
yarkon$ cvs co -d myproj_branch -r Release-2001_05_01-bugfixes myproj

An Overview of CVS

or switch an existing working copy over to it:

yarkon$ pwd
/home/whatever/myproj
yarkon$ cvs update -r Release-2001_05_01-bugfixes

The end result is the same (well, the name of the new working copy’s top-level directory
might be different, but that’s not important for CVS’s purposes). If your current working
copy has uncommitted changes, you’ll probably want to use checkout instead of update to
access the branch. Otherwise, CVS attempts to merge your changes into the working copy
as it switches it over to the branch. In that case, you might get conflicts, and even if you
didn’t, you'd still have an impure branch. It won’t truly reflect the state of the program as of
the designated tag, because some files in the working copy will contain modifications made
by you.

Anyway, let’s assume that by one method or another you get a working copy on the desired
branch:

yarkon$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Tue Apr 20 06:12:56 2001
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-2001_05_01-bugfixes
(branch: 1.5.2)
Sticky Date: (none)
Sticky Options: (none)

yarkon$ cvs -q status b-subdir/random.c

File: random.c Status: Up-to-date
Working revision: 1.2 Mon Apr 19 06:35:27 2001
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: Release-2001_05_01-bugfixes (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

yarkon$

(The contents of those Sticky Tag lines will be explained shortly.) If you modify hello.c and
random.c, and commit

yarkon$ cvs -q update

M hello.c

M b-subdir/random.c

yarkon$ cvs ci -m "fixed old punctuation bugs"
cvs commit: Examining .

77

78 Chapter 2

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <= hello.c
new revision: 1.5.2.1; previous revision: 1.5
done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <= random.c
new revision: 1.2.2.1; previous revision: 1.2
done

yarkon$

you'll notice that there’s something funny going on with the revision numbers:

yarkon$ cvs -q status hello.c b-subdir/random.c

File: hello.c Status: Up-to-date
Working revision: 1.5.2.1 Wed May 5 00:13:58 2001
Repository revision: 1.5.2.1 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: ReTease-2001_05_01-bugfixes (branch: 1.5.2)
Sticky Date: (none)
Sticky Options: (none)

File: random.c Status: Up-to-date
Working revision: 1.2.2.1 Wed May 5 00:14:25 2001
Repository revision: 1.2.2.1 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: Release-2001_05_01-bugfixes (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

yarkon$

They now have four digits instead of two!

A closer look reveals that each file’s revision number is just the branch number (as shown
on the Sticky Tag line) plus an extra digit on the end.

What you're seeing is a little bit of CVS’s innards. Although you almost always use a branch
to mark a project-wide divergence, CVS actually records the branch on a per-file basis. This
project had five files in it at the point of the branch, so five individual branches were made,
all with the same tag name: “Release-2001_05_01-bugfixes.”

Most people consider this per-file scheme a rather inelegant implementation on
CVS’s part. It’s a bit of the old RCS legacy showing through—RCS didn’t know how
to group files into projects, and even though CVS does, it still uses code inherited
from RCS to handle branches.

An Overview of CVS

Ordinarily, you don’t need to be too concerned with how CVS is keeping track of things
internally, but in this case, it helps to understand the relationship between branch numbers
and revision numbers. Let’s look at the hello.c file; everything we’re about to say about hello.c
applies to the other files in the branch (with revision/branch numbers adjusted accordingly).

The hello.c file was on revision 1.5 at the point where the branch was rooted. When we
created the branch, a new number was tacked onto the end to make a branch number (CVS
chooses the first unused even, nonzero integer). Thus, the branch number in this case be-
came “1.5.2.” The branch number by itself is not a revision number, but it is the root (that
is, the prefix) of all the revision numbers for hello.c along this branch.

However, when we ran that first cvs status command in a branched working copy, hello.c’s
revision number showed up as only “1.5,” not “1.5.2.0” or something similar. This is because
the initial revision on a branch is always the same as the trunk revision of the file, where the
branch sprouts off. Therefore, CVS shows the trunk revision number in status output, for as
long as the file is the same on both branch and trunk.

Once we had committed a new revision, hello.c was no longer the same on both trunk and
branch—the branch version of the file had changed, while the trunk remained the same.
Accordingly, hello.c was assigned its first branch revision number. We saw this in the status
output after running commit, where its revision number is clearly “1.5.2.1.”

The same story applies to the random.c file. Its revision number at the time of branching
was “1.2,” so its first branch is “1.2.2,” and the first new commit command of random.c on
that branch received the revision number “1.2.2.1.”

There is no numeric relationship between 1.5.2.1 and 1.2.2.1—no reason to think that they
are part of the same branch event, except that both files are tagged with “Release-
2001_05_01-bugfixes,” and the tag is attached to branch numbers 1.5.2 and 1.2.2 in the
respective files. Therefore, the tag name is your only handle on the branch as a project-wide
entity. Although it is perfectly possible to move a file to a branch by using the revision
number directly

yarkon$ cvs update -r 1.5.2.1 hello.c
U hello.c
yarkon$

it is almost always a bad idea. You would be mixing the branch revision of one file with
nonbranch revisions of the others. Who knows what losses might result? It is better to use
the branch tag to refer to the branch and do all files at once by not specifying any particular
file. That way you don’t have to know or care what the actual branch revision number is for
any particular file.

[t is also possible to have branches that sprout off other branches, to any level of absurdity.
A file with a revision number of 1.5.4.37.2.3.12.1 is depicted graphically by Figure 2.4.

79

80 Chapter2

Revision
1.5.4.37.2.3.121

> Branch 1.5.4.37.2.3.12
> Branch 1.5.4.37.2.3.10
Branch 1.5.4.37.2.3.8

Branch 1.5.4.37.2.3.6

> Branch 1.5.4.37.2.3.4

Revision
1.56.4.37.2.3 .,

Revision
1.5.4.37. > Branch 1.5.4.37.2.3.2
Branch 1.5.4.37.2
Revision Branch 1.5.4
155 Branch 1.5.2
s (Main Trunk)

Figure 2.4
A ridiculously high degree of branching.

Admittedly, it’s hard to imagine what circumstances would make such a branching depth
necessary, but isn’t it nice to know that CVS will go as far as you're willing to take it? Nested
branches are created the same way as any other branch: Check out a working copy on
branch N, run cvs tag -b branchname in it, and you’ll create branch N.M in the repository
(where “N” represents the appropriate branch revision number in each file, such as “1.5.2.1,
and “M” represents the next available branch at the end of that number, such as “2”).

Merging Changes from Branch to Trunk

Now that the bug fix has been committed on the branch, let’s switch the working copy over
to the highest trunk revisions and see if the bug fix needs to be done there, too. We’ll move
the working copy off the branch by using update -A (branch tags are like other sticky
properties in this respect) and then using diff against the branch we just left:

yarkon$ cvs -q update -A

U hello.c

U b-subdir/random.c

yarkon$ cvs -q diff -c -r Release-2001_05_01-bugfixes
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5.2.1

retrieving revision 1.6

diff -¢ -r1.5.2.1 -rl.6

*** hello.c 2001/05/05 00:15:07 1.5.2.1
--- hello.c 2001/05/04 20:19:16 1.6

*khkkkkhkkkhkkkkhkkkhkkkk

An Overview of CVS

*kk 4,9 *kkk

main ()
{
printf ("Hello, world!\n");
! printf ("between hello and good-bye\n");
printf ("Goodbye, world!\n");

}

--- 4,10 --
main ()
{

printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
+ /* a comment on the last line */
}
Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2.2.1

retrieving revision 1.2

diff -¢ -r1.2.2.1 -rl.2

*** p-subdir/random.c 2001/05/05 00:15:07 1.2.2.1
--- b-subdir/random.c 2001/04/19 06:35:27 1.2
kkkkkkkkhkkkkkkkk

*kk 4,8 *kkk

void main ()
{
! printf ("A random number.\n");

}
- 4,8 - -
void main ()
{
! printf ("a random number\n");
}
yarkon$

Using the diff command shows that good-bye is spelled with a hyphen in the branch revi-
sion of hello.c, and that the trunk revision of that file has a comment near the end that the
branch revision doesn’t have. Meanwhile, in random.c, the branch revision has a capital
“A” and a period, whereas the trunk doesn’t.

To actually merge the branch changes into the current working copy, run update with the
-j flag (the same j for “join” that we used to revert a file to an old revision before):

yarkon$ cvs -q update -j Release-2001_05_01-bugfixes

81

82 Chapter 2

RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.5

retrieving revision 1.5.2.1

Merging differences between 1.5 and 1.5.2.1 into hello.c
RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2

retrieving revision 1.2.2.1

Merging differences between 1.2 and 1.2.2.1 into random.c
yarkon$ cvs -q update

M hello.c

M b-subdir/random.c

yarkon$ cvs -q ci -m "merged from branch Release-2001_05_01-bugfixes"
Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <= hello.c

new revision: 1.7; previous revision: 1.6

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <= random.c
new revision: 1.3; previous revision: 1.2

done

yarkon$

This takes the changes from the branch’s root to its tip and merges them into the current
working copy (which subsequently shows those modifications just as though the files had
been hand-edited into that state). The changes are then committed onto the trunk, be-
cause nothing in the repository changed when a working copy underwent a merge.

Although no conflicts were encountered in this example, it’s quite possible (even probable)
that there would be some in a normal merge. If that happens, they need to be resolved like
any other conflict and then committed.

Multiple Merges

Sometimes a branch will continue to be actively developed even after the trunk has under-
gone a merge from it. For example, this can happen if a second bug in the previous public
release is discovered and has to be fixed on the branch. Maybe someone didn’t get the joke
in random.c, so on the branch you have to add a line explaining it

yarkon$ pwd
/home/whatever/myproj_branch
yarkon$ cat b-subdir/random.c
/* Print out a random number. */
#include <stdio.h>
void main ()
{
printf ("A random number.\n");
printf ("Get the joke?\n");

An Overview of CVS

}
yarkon$

and then run commit. If that bug fix also needs to be merged into the trunk, you might be
tempted to try the same update command as before in the trunk working copy to “re-merge”:

yarkon$ cvs -q update -j Release-2001_05_01-bugfixes

RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.5

retrieving revision 1.5.2.1

Merging differences between 1.5 and 1.5.2.1 into hello.c
RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2

retrieving revision 1.2.2.2

Merging differences between 1.2 and 1.2.2.2 into random.c
rcsmerge: warning: conflicts during merge

yarkon$

As you can see, that didn’t have quite the desired effect—we got a conflict, even though the
trunk copy hadn’t been modified there and, therefore, no conflict was expected.

The trouble was that the update command behaved exactly as described: It tried to take all
the changes between the branch’s root and tip and merge them into the current working
copy. The only problem is that some of those changes had already been merged into this
working copy. That’s why we got the conflict:

yarkon$ pwd
/home/whatever/myproj
yarkon$ cat b-subdir/random.c
/* Print out a random number. */
f#finclude <stdio.h
void main ()
{
<<<<KLKLK random.c
printf ("A random number.\n");

printf ("A random number.\n");
printf ("Get the joke?\n");
DOXX5>> 1.2.2.2
}
yarkon$

You could go through resolving all such conflicts by hand—it’s usually not hard to tell what
you need to do in each file. Nevertheless, it is even better to avoid a conflict in the first
place. By passing two -j flags instead of one, you’ll get only those changes from where you
last merged to the tip instead of all of the changes on the branch, from root to tip. The first

83

84 Chapter2

-j gives the starting point on the branch, and the second is just the plain branch name
(which implies the tip of the branch).

The question then is, how can you specify the point on the branch from which you last
merged?! One way is to qualify by using a date along with the branch tag name. CVS pro-
vides a special syntax for this:

yarkon$ cvs -q update -j "Release-2001_05_01-bugfixes:2 days ago™ \
-j Release-2001_05_01-bugfixes

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v

retrieving revision 1.2.2.1

retrieving revision 1.2.2.2

Merging differences between 1.2.2.1 and 1.2.2.2 into random.c

yarkon$

If the branch tag name is followed by a colon and then a date (in any of the usual CVS date
syntaxes), CVS will include only changes later than that date. So if you know that the
original bug fix was committed on the branch three days ago, the preceding command merges
the second bug fix only.

A better way, if you plan ahead, is to tag the branch after each bug fix (just a regular tag—
we’re not starting a new branch here or anything like that). Suppose after fixing the bug in
the branch and committing, you do this in the branch’s working copy:

yarkon$ cvs -q tag Release-2001_05_01-bugfixes-fix-number-1
README. txt

hello.c

a-subdir/whatever.c

a-subdir/subsubdir/fish.c

b-subdir/random.c

yarkon$

— — = =

Then, when it’s time to merge the second change into the trunk, you can use that con-
veniently placed tag to delimit the earlier revision:

yarkon$ cvs -q update -j Release-2001_05_01-bugfixes-fix-number-1 \
-j Release-2001_05_01-bugfixes

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v

retrieving revision 1.2.2.1

retrieving revision 1.2.2.2

Merging differences between 1.2.2.1 and 1.2.2.2 into random.c
yarkon$

This way, of course, is much better than trying to recall how long ago you made one change
versus another, but it works only if you remember to tag the branch every time it is merged
to the trunk. The lesson, therefore, is to tag early and tag often! It’s better to err on the side
of too many tags (as long as they all have descriptive names) than to have too few. In these

An Overview of CVS

last examples, for instance, there was no requirement that the new tag on the branch have
aname similar to the branch tag itself. Although we named it “Release-2001_05_01-bugfixes-
fix-number-1,” it could just as easily have been “fix1.” However, the former is preferable,
because it contains the name of the branch and thus won’t ever be confused with a tag on
some other branch. (Remember that tag names are unique within files, not within branches.
You can’t have two tags named “fix1” in the same file, even if they refer to revisions on
different branches.)

Creating a Tag or Branch without a Working Copy

As stated earlier, tagging affects the repository, not the working copy. That begs the ques-
tion: Why require a working copy at all when tagging? The only purpose that it serves is to
designate which project and which revisions of the various files in the project are being
tagged. If you could specify the project and revisions independently of the working copy, no
working copy would be necessary.

There is way to do this: the rtag command (for “repository tag”). It’s very similar to tag; a
couple of examples will explain its usage. Let’s go back to the moment when the first bug
report came in and we needed to create a branch rooted at the last public release. We
checked out a working copy at the release tag and then ran tag -b on it:

yarkon$ cvs tag -b Release-2001_05_01-bugfixes

This created a branch rooted at “Release-2001_05_01.” However, because we know the
release tag, we could have used it in an rtag command to specify where to root the branch,
not even bothering with a working copy:

yarkon$ cvs rtag -b -r Release-2001_05_01 Release-2001_05_01-bugfixes myproj

That’s all there is to it. That command can be issued from anywhere, inside or outside a
working copy. However, your CVSROOT environment variable would have to point to the
repository, of course, or you can specify it with the global -d option. It works for non-branch
tagging, too, but it’s less useful that way because you have to specify each file’s revision
number, one by one. (Or you can refer to it by tag, but then you’d obviously already have a
tag there, so why would you want to set a second one on the exact same revisions?)

You now know enough to navigate inside CVS and enough to start working with other
people on a project. There are still a few minor features that haven’t been introduced, as
well as some unmentioned but useful options to features we’ve already seen. These will all
be presented as appropriate in chapters to come, in scenarios that demonstrate both how
and why to use them. When in doubt, don’t hesitate to consult the Cederqvist manual; it is
an indispensable resource for serious CVS users.

85

Chapter 3

CVS Repository Administration

The Administrator’s Role

In the last chapter, you learned enough CVS to use it effectively
as a project participant. There is, however, quite a difference be-
tween being a project manager and being a participant. If you're
going to be a project maintainer, you need to know how to install
CVS and administer repositories.

In this chapter, we look in detail at how the repository is structured
and how CVS uses it. You'll learn all the major steps CVS goes
through during updates and commits, and how you can modify its
behavior. By understanding how CVS works, you'll also be able to
trace problems to their causes and fix them in maintainable ways.

This sounds complicated, and to some extent it really is. How-
ever, remember that CVS has been serving the developer
community for quite some time and will probably be around for
many years to come. That’s the beauty of CVS: whatever you learn
now will be useful for a long time. CVS also tends to become
more indispensable the more you use it. If you're going to be that
dependent on something (and trust us, you will be), it’s worth
really getting to know it.

Let’s just jump right into it and see how to install CVS on your
system.

Getting and Installing CVS

With the pervasiveness of Linux distributions at the time of this writ-
ing, you might find that you actually don’t have to install CVS. In
fact, all current Linux, Mac OSX, and BSD distributions include a

87

88 Chapter 3

functioning and configured CVS; it’s probably already installed in /ust/bin or some other
likely location. If not, Red Hat, Mandrake, and other compatible Linux users can usually
find an RPM (Red Hat Package Manager) for the latest (or nearly latest) version of CVS in
their distributions or from www.rpmfind.net. Debian users, on the other hand, can install
the latest Debian package with these commands:

yarkon$ apt-get update
yarkon$ apt-get install cvs

Building CVS from Source

If CVS isn’t already on your machine, you'll probably have to build it from source. If you're
a non-Unix user, you'll probably find it easier to get a prebuilt binary for your operating
system (more on that later in this chapter). Fortunately, CVS is fully autoconfigured—that
is, it uses the GNU autoconfiguration mechanism, making compilation from source surpris-
ingly easy.

As of this writing, there are two canonical sites from which you can download CVS. One is
the Free Software Foundation’s FTP site, ftp://ftp.gnu.org/gnu/, which offers CVS as an
official GNU tool. The other is the official CVS site. It distributes releases from ftp://

ftp.cvshome.org/pub/.

Either location is fine. In the following example, we use the official CVS site. If you point
your FTP client (probably your Web browser) to http://ftp.cvshome.org//, you'll see a list of
directories, something like this:

LATEST/ 13-Jun-2001 07:56 -
LATEST_IS_1.11.1pl1 26-Apr-2001 08:51 0k
README 13-Jun-2001 07:46 1k
cvs-1.10.5/ 26-Apr-2001 18:55 -
cvs-1.10.6/ 04-Apr-2001 08:40 -
cvs-1.10.7/ 04-Apr-2001 08:41 -
cvs-1.10.8/ 26-Apr-2001 18:59 -
cvs-1.10/ 26-Apr-2001 18:49 -
cvs-1.11.1/ 13-Jun-2001 07:56 -
cvs-1.11/ 26-Apr-2001 19:00 -
cvs-1.9.28/ 26-Apr-2001 18:59 -
cvs-1.9/ 26-Apr-2001 11:28 -
Tinux/ 27-Apr-2001 14:10 -
macintosh/ 04-Apr-2001 08:41 -
0s2/ 26-Apr-2001 18:59 -
rcs/ 26-Apr-2001 19:01 -
tkcvs/ 04-Apr-2001 08:42 -
training/ 04-Apr-2001 08:42 -

unix/ 28-Apr-2001 12:44 -

CVS Repository Administration 89

vms/ 04-Apr-2001 08:42 -
win32/ 26-Apr-2001 19:00 -

Pay attention to the directories beginning with “cvs-” (you can ignore most of the others).
As you can see, there are nine cvs- directories, which means that you're already faced with
a choice: Get the designated “stable” release, or go with a newer (but less-tested) interim
release. The stable releases have only one decimal point, as in “cvs-1.11,” whereas the in-
terim releases have minor version increments tacked on the end, as in “1.10.7.”

The GNU site usually offers only the major releases, not the interim ones, so you
won't see all of this if you get CVS from there.

In general, the interim releases are pretty safe, and they sometimes contain fixes to bugs
that were found in the major release. Your best policy is to go with the highest interim
release; however, if you encounter any problems with it, be prepared to drop back to the
previous release.

The highest release listed in the earlier example is cvs-1.11. Entering that directory, we see
this:

Index of /pub/cvs-1.11
cvs-1.11.tar.gz 17-May-01 03:41 2.4M

That’s it—the full source code to CVS. Just download it to your machine, and you’re ready
to build. At this point, if you're already familiar with the standard build process for GNU
tools, you know what to do and probably don’t need to read anything between here and the
section “Anatomy of a CVS Distribution.” On the other hand, if you’re not sure how to
proceed, read on.

Compilation Instructions

The following compilation instructions and examples assume that you have a fairly stan-
dard distribution of Unix. Any of the free versions of Unix (for example, FreeBSD or Linux)
should work with no problem, as should the major commercial Unix versions (such as SunOS/
Solaris, AIX, HP-UX, or True64). Even if these instructions don’t work for you exactly as
written, don’t give up hope. Although covering the details of compiling on every operating
system is beyond the scope of this book, later in this chapter we give you some pointers to
other help resources.

To proceed with the compilation, first unpack the tar file using GNU gunzip and tar (if you
don’t have these installed on your system, you can get gunzip from ftp://ftp.cvshome.org):

yarkon$ gunzip cvs-1.11l.tar.gz
yarkon$ tar xvf cvs-1.11l.tar

90 Chapter 3

Now you have a new directory on your machine—cvs-1.11—and it is populated with the
CVS source code. Go into that directory and configure CVS for your system by using the
provided configure script:

yarkon$ cd cvs-1.11

yarkon$./configure

creating cache ./config.cache

checking for gcc... gcc

checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking how to run the C preprocessor... gcc -E
(etc)

When the configure command finishes, the source tree will know everything it needs to
know about compiling on your machine. The next step is to type:

yarkon$ make

You'll see lots of output fly by, then type:

yarkon$ make install

You will probably need to do that last step as the superuser. You'll see yet more output fly by;
when it’s all over, CVS will be installed on your system.

By default, the CVS executable ends up as /usr/local/bin/cvs. This assumes you have a de-
cent make program installed on your system (again, if you don’t have one, get the GNU
project’s make from ftp://ftp.gnu.org/gnu/make/).

If you want CVS to install to a location other than /usr/local/bin, you should change how
you run the initial configuration step. For example,

yarkon$./configure --prefix=/usr

results in CVS being installed as [usr/bin/cvs (it always ends up as PREFIX/bin/cvs). The

default prefix is /usr/local, which is fine for most installations.

For experienced users: Although older versions of CVS consisted of more than just
an executable in that they depended on having RCS installed as well, this has not
been the case since version 1.10. Therefore, you don’t need to worry about any
libraries or executables other than cvs itself.

If you intend to use CVS to access only remote repositories, the preceding is all you need to
do. If you also plan to serve a repository from this system, a few additional steps are neces-
sary, which are covered later in this chapter.

CVS Repository Administration 91

Getting and Installing CVS under Windows

Unless you're truly religious about having the source code to your executable, you don’t
need to compile CVS from source on your Windows box. Unlike on a Unix system, the
necessary compilation tools probably do not already exist on your system, so a source build
would involve first going out and getting those tools. Because such a project is beyond the
scope of this book, we just give instructions for getting a precompiled CVS binary.

First, note that Windows binary distributions of CVS are usually made only for major re-
leases of CVS—not for the interim releases—and you won’t find them on the GNU FTP
site. You'll need to go to Cyclic Software’s download site. In the major version directory,
http://ftp.cvshome.org/cvs-1.11/, you'll see an extra subdirectory,

Index of /pub/cvs-1.11
cvs-1.11.tar.gz 18-Jun-00 09:35 2.4M
windows/

inside of which is a ZIP file:

Index of /pub/cvs-1.10/windows
cvs-1.11-win.zip 18-Jun-00 10:08 589k

This ZIP file contains a binary distribution of CVS. Download and extract that ZIP file:
yarkon$ unzip cvs-1.10-win.zip

Archive: cvs-1.10-win.zip
inflating: cvs.html
inflating: cvs.exe
inflating: README
inflating: FAQ
inflating: NEWS
inflating: patch.exe
inflating: win32gnu.d11

The README contains detailed instructions. For most installations, they can be summa-
rized as follows: Put all of the EXE and DLL files in a directory in your PATH. Additionally,
if you’re going to be using the pserver method to access a remote repository, you might need
to put the following in your C:\autoexec.bat file and reboot:

set HOME=C:

This tells CVS where to store the .cvspass file.

At this time, CVS running under Windows cannot serve repositories to remote machines;
it can be a client (connecting to remote repositories) and operate in local mode (using a

92 Chapter 3

repository on the same machine). For the most part, this book assumes that CVS under
Windows is operating as a client. However, it shouldn’t be too hard to set up a local reposi-
tory under Windows after reading the Unix-oriented instructions in the rest of this chapter.

If you are accessing only remote repositories, you might not even need to run CVS. A tool
called WinCvs implements only the client-side portion of CVS. It is distributed separately
from CVS itself but, like CVS, is freely available under the GNU General Public License.

More information is available from www.wincvs.org.

Getting and Installing CVS on a Macintosh

CVS is available for the Macintosh, but not as part of the main distribution. At this time,
there are actually three separate Macintosh CVS clients available:

¢ MacCus—www.wincvs.org

¢ MacCVSClient—www.glink.net.hk/~jb/MacCVSClient or http://cvshome.org/dev/

codemac.html
¢ MacCVS Pro—www.maccvs.org

Frankly, these are all equivalent. Try them all and see which one you like. MacCVS Pro
seems to be under active development. MacCvs is apparently a companion project of
WinCVS and shares a home page with it.

Limitations of the Windows and Macintosh Versions

The Windows and Macintosh distributions of CVS are generally limited in functionality.
All of them can act as clients, meaning that they can contact a repository server to obtain
a working copy, commit, update, and so on. However, they can’t serve repositories them-
selves. If you set it up right, the Windows port can use a local-disk repository, but it still
can’t serve projects from that repository to other machines. In general, if you want to have
a network-accessible CVS repository, you must run the CVS server on a Unix box.

Anatomy of a CVS Distribution

The preceding instructions are designed to get you up and running quickly, but there’s a lot
more inside a CVS source distribution than just the code. Here’s a quick roadmap to the
source tree, so you'll know which parts are useful resources and which can be ignored.

Informational Files

In the top level of the distribution tree, you'll find several files containing useful informa-
tion (and pointers to further information). They are, in approximate order of importance:

¢ NEWS—This file lists the changes from one release to the next, in reverse chronological
order (that is, most recent first). If you've already been using CVS for a while and have

CVS Repository Administration 93

just upgraded to a new version, you should look at the NEWS file to see what new fea-
tures are available. Also, although most changes to CVS preserve backward compatibility,
noncompatible changes do occur from time to time. It’s better to read about them here
than be surprised when CVS doesn’t behave the way you expect it to.

BUGS—THhis file contains exactly what you think it does: a list of known bugs in CVS.
They usually aren’t showstoppers, but you should read over them whenever you install a
new release.

DEVEL-CVS—This file is the CVS “constitution.” It describes the process by which
changes are accepted into the main CVS distribution and the procedures through which
a person becomes a CVS developer. You don’t really need to read it if you just want to use
CVS; however, it’s highly interesting if you want to understand how the mostly uncoor-
dinated efforts of people scattered across the globe coalesce into a working, usable piece
of software. And, of course, it’s required reading if you plan to submit a patch (whether
it’s a bug fix or new feature) to CVS.

HACKING—Despite its name, the HACKING file doesn’t say much about the design
or implementation of CVS. It’s mainly a guide to coding standards and other technical
“administrivia” for people thinking of writing a patch to CVS. You can think of it as an
addendum to the DEVEL-CVS file. After you understand the basic philosophy of CVS
development, you must read the HACKING file to translate that into concrete coding
practices.

FAQ—This is the CVS “Frequently Asked Questions” document. Unfortunately, it has
a rather spotty maintenance history. David Grubbs took care of it until 1995, then he
(presumably) got too busy and it languished for a while. Eventually, in 1997, Pascal Molli
took over maintenance. Molli also didn’t have time to maintain it by hand, but at least
he found time to put it into his automated FAQ-O-Matic system, which allows the pub-
lic to maintain the FAQ in a decentralized manner (basically, anyone can edit or add
entries via a Web form). This was probably a good thing, in that at least the FAQ was
once again being maintained; however, its overall organization and quality control are
not as good as they would be if one person were maintaining it.

The master version of the FAQ is always available from Molli’s Web site (www.loria.fr/
~molli/cvs-index.html, under the link “Documentation”). The FAQ file shipped with
CVS distributions is generated automatically from that FAQ-O-Matic database, so by
the time it reaches the public it’s already a little bit out of date. Nevertheless, it can be
quite helpful when you’re looking for hints and examples of how to do something spe-
cific (say, merging a large branch back into the trunk or resurrecting a removed file). The
best way to use it is as a reference document; you can bring it up in your favorite editor
and do text searches on terms that interest you. Trying to use it as a tutorial would be a
mistake—it’s missing too many important facts about CVS to serve as a complete guide.

94 Chapter 3

Subdirectories

The CVS distribution contains a number of subdirectories. In the course of a normal instal-
lation, you won’t have to navigate among them, but if you want to go poking around in the
sources, it’s nice to know what each one does. Here they are:

contrib/
diff/
doc/
emx/
1ib/
man/
0s2/
src/
tools/
vms /
windows-NT/
z1ib/

You can ignore the majority of these. The emx/, 0s2/, vis/, and windows-NT/ subdirectories
all contain operating-system—specific source code, which you will need only if you’re actu-
ally trying to debug a code-level problem in CVS (an unlikely situation, although not unheard
of). The diff/ and zlib/ subdirectories contain CVS’s internal implementations of the diff
program and the GNU gzip compression library, respectively. (CVS uses the latter to reduce
the number of bits it has to send over the network when accessing remote repositories.)

The contrib/ and tools/ subdirectories contain free third-party software that is intended to
be used with CVS. In contrib/, you will find an assortment of small, specialized shell scripts
(read contrib/README to find out what they do). The tools/ subdirectory used to contain
contributed software, but now contains a README file, which says in part:

This subdirectory formerly contained tools that can be used with CVS.
In particular, it used to contain a copy of pcl-cvs version 1.x.
Pcl-cvs is an Emacs interface to CVS.

If you are Tooking for pcl-cvs, we'd suggest pcl-cvs version 2.x, at:
ftp://ftp.weird.com/pub/Tocal/

The pcl-cvs package it’s referring to is very handy, and we discuss it in Chapter 10.

The src/ and lib/ subdirectories contain the bulk of the CVS source code, which involves
the CVS internals. The main data structures and commands are implemented in src/, whereas
lib/ contains small code modules of general utility that CVS uses.

The man/ subdirectory contains the CVS man pages (intended for the Unix online manual
system). When you ran make install, they were incorporated into your Unix system’s regular
man pages, SO you can type

CVS Repository Administration 95

yarkon$ man cvs

and get a rather terse introduction and subcommand reference to CVS. Although useful as
a quick reference, the man pages may not be as up to date or complete as the Cederqvist
manual (see the next section); however, if all you have are the man pages, you can usually
sort things out.

The Cederqvist Manual

That leaves the doc/ subdirectory, whose most important inhabitant is the famed Cederqvist.
These days, it’s probably a stretch to call it “the Cederqvist.” Although Per Cederqvist (of
Signum Support, Linkoping Sweden, www.signum.se) wrote the first version around 1992,
it has been updated since then by many other people. For example, when contributors add
a new feature to CVS, they usually also document it in the Cederqvist.

The Cederqvist manual is written in the Texinfo format, which is used by the GNU project
because it’s relatively easy to produce both online and printed output from it (in Info and
PostScript formats, respectively). The Texinfo master file is doc/cvs.texinfo, but CVS dis-
tributions come with the Info and PostScript already generated, so you don’t have to worry
about running any Texinfo tools yourself.

Although the Cederqvist can be used as an introduction and tutorial, it is probably most
useful as a reference document. For that reason, most people browse it online instead of
printing it out (although the PostScript file is doc/cvs.ps, for those with paper to spare). If
this is the first time you've installed CVS on your system, you’ll have to take an extra step to
make sure the manual is accessible online.

The Info files (doc/cvs.info, doc/cvs.info-1, doc/cvs.info-2, and so on) were installed for you
when you ran make install. Although the files were copied into the system’s Info tree, you
might still have to add a line for CVS to the Info table of contents, the “Top” node. (This is
necessary only if this is the first time CVS has been installed on your system; otherwise, the
entry from previous installations should already be in the table of contents.)

If you've added new Info documentation before, you might be familiar with the process.
First, figure out where the Info pages were installed. If you used the default installation (in
Just/local/), then the Info files are /ust/local/info/cvs.info*. If you installed using

yarkon$./configure —prefix=/usr

the files ended up as /usr/info/cvs.*. After you locate the files, you'll need to add a line for CVS
to the Info table of contents, which is in a file named dir in that directory (so in the latter case,
it would be /usr/info/dir). If you don’t have root access, ask your system administrator to do it.
Here is an excerpt from dir before the reference to CVS documentation was added:

* Bison: (bison). The Bison parser generator.
* Cpp: (cpp). The GNU C preprocessor.
* Flex: (flex). A fast scanner generator

96 Chapter 3

And here is the same region of dir afterward:

* Bison: (bison). The Bison parser generator.
* Cpp: (cpp). The GNU C preprocessor.

* Cvs: (cvs). Concurrent Versions System
* Flex: (flex). A fast scanner generator

The format of the line is very important. You must include the asterisk, spaces, and colon in
“# Cvs: ” and the parentheses and period in “(cvs).” after it. If any of these elements is
missing, the Info dir format will be corrupt, and you'll be unable to read the Cedergvist.

Once the manual is installed and referred to from the table of contents, you can read it with
any Info-compatible browser. The ones most likely to be installed on a typical Unix system
are either the command-line Info reader, which can be invoked this way if you want to go
straight to the CVS pages

yarkon$ info cvs

and the one within Emacs, which is invoked by typing
M-x info

or:

C-h i

Take whatever time is necessary to get the Cederqvist set up properly on your system when you
install CVS; it will pay off many times down the road when you need to look something up.

Other Sources of Information

In addition to the Cederqvist, the FAQ), and the other files in the distribution itself, there
are Internet resources devoted to CVS. If you're going to administer a CVS server, you'll
probably want to join the info-cvs mailing list. To subscribe, send email to info-cvs-
request@gnu.org (the list itself is info-cvs@gnu.org). Traffic can be medium to heavy, around
10 to 20 emails a day, most of them questions seeking answers. The majority of these can be
deleted without reading (unless you want to help people by answering their questions, which
is always nice), but every now and then someone will announce the discovery of a bug or
announce a patch that implements some feature you’ve been wanting.

You can also join the formal bug report mailing list, which includes every bug report sent in.
This probably isn’t necessary, unless you intend to help fix the bugs, which would be great,
or you're terrifically paranoid and want to know about every problem other people find with
CVS. If you do want to join, send email to bug-cvs-request@gnu.org.

CVS Repository Administration 97

There’s also a Usenet newsgroup, comp.software.config-mgmt, which is about version con-
trol and configuration management systems in general, in which there is a fair amount of
discussion about CVS.

Finally, there are at least three Web sites devoted to CVS. Cyclic Software’s http://
cvshome.org/ has been CVS’s informal home site for a few years and probably will continue
to be for the foreseeable future. Cyclic Software also provides server space and Net access
for the repository where the CVS sources are kept. The Cyclic Web pages contain compre-
hensive links to experimental patches for CVS, third-party tools that work with CVS,
documentation, mailing list archives, and just about everything else. If you can’t find what
you need in the distribution, http://cvshome.org/ is the place to start looking.

Two other good sites are Pascal Molli’s www.loria.fr/~molli/cvs-index.html and Sean
Dreilinger’s http://durak.org/cvswebsites/. The biggest attraction at Molli’s site is, of course,
the FAQ, but it also has links to CVS-related tools and mailing list archives. Dreilinger’s
site specializes in information about using CVS to manage Web documents and also has a
CVS-specific search engine.

Starting a Repository

Once the CVS executable is installed on your system, you can start using it right away as a
client to access remote repositories, following the procedures we described in Chapter 2.
However, if you want to serve revisions from your machine, you have to create a repository
there. The command to do that is

yarkon$ cvs -d /usr/local/newrepos init

where [ust/local/newrepos is a path to wherever you want the repository to be. (Of course,
you must have write permission to that location, which might imply running the command
as the root user.) It might seem somewhat counterintuitive that the location of the new
repository is specified before the init subcommand instead of after it, but by using the -d
option, it stays consistent with other CVS commands.

The command will return silently after it is run. Let’s examine the new directory:

yarkon$ 1s -1d /usr/local/newrepos

drwxrwxr-x 3 root root 1024 Jun 24 17:59 /usr/local/newrepos/
yarkon$ cd /usr/local/newrepos

yarkon$ 1s

CVSROOT

yarkon$ cd CVSROOT

yarkon$ 1s

checkoutlist config,v history notify taginfo,v

checkoutlist,v cvswrappers lToginfo notify,v verifymsg

98 Chapter 3

commitinfo cvswrappers,v loginfo,v rcsinfo verifymsg,v
commitinfo,v editinfo modules rcsinfo,v

config editinfo,v modules,v taginfo

yarkon$

The single subdirectory in the new repository—CVSROOT/—contains various adminis-
trative files that control CVS’s behavior. Later on, we examine those files one by one; for
now, the goal is just to get the repository working. In this case, “working” means users can
import, check out, update, and commit projects.

Don’t confuse the CVSROOT environment variable introduced in Chapter 2 with
this CVSROOT subdirectory in the repository. They are unrelated; it is an unfortu-
nate coincidence that they share the same name. The former is a way for users to
avoid having to type -d <repository-location> every time they use CVS; the latter is
the administrative subdirectory of a repository.

Once the repository is created, you must take care of its permissions. CVS does not require
any particular, standardized permission or file ownership scheme; it merely needs write ac-
cess to the repository. However—partly for security reasons, but mainly for your own sanity
as an administrator—we highly recommend that you take the following steps:

1. Add a Unix group “cvs” to your system. Any users who need to access the repository
should be in this group. For example, here’s the relevant line from a typical machine’s
[etc/group file:

cvs:*:105:mosheb,kfogel,anonymous, jrandom

2. Make the repository’s group ownership and permissions reflect this new group:

yarkon$ cd /usr/local/newrepos
yarkon$ chgrp -R cvs
yarkon$ chmod ug+rwx . CVSROOT

Now any of the users listed in that group can start a project by running cvs import, as
described in Chapter 2. Checkout, update, and commit should work as well. Users can also
reach the repository from remote locations by using the :ext: method, assuming that they
have rsh or ssh access to the repository machine. (You might have noticed that the chgrp
and chmod commands in that example gave write access to a user named “anonymous,”
which is not what one would expect. The reason is that even anonymous, read-only reposi-
tory users need system-level write access, so that their CVS processes can create temporary
lockfiles inside the repository. CVS enforces the “read-only” restriction of anonymous access
not through Unix file permissions, but by other means, which we cover shortly.)

CVS Repository Administration 99

If your repository is intended to serve projects to the general public, where contributors
won’t necessarily have accounts on the repository machine, you should set up the password-
authenticating server now. It’s necessary for anonymous read-only access, and it’s also probably
the easiest way to grant commit access to certain people without giving them full accounts
on the machine.

The Password-Authenticating Server

Before running through the steps needed to set up the password server, let’s examine how
such connections work in the abstract. When a remote CVS client uses the :pserver: method
to connect to a repository, the client is actually contacting a specific port number on the
server machine—specifically, port number 2401 (which is 49 squared, if you like that sort of
thing). Port 2401 is the designated default port for the CVS pserver, although one could
arrange for a different port to be used as long as both client and server agree on it.

The CVS server is not actually waiting for connections at that port—the server won’t get
started up until a connection actually arrives. Instead, the Unix inetd (Internet daemon)
program is listening on that port and needs to know that when it receives a connection
request there, it should start up the CVS server and connect it to the incoming client.

This is accomplished by modifying inetd’s configuration files: /etc/services and /etc/inetd.conf.
The services file maps raw port numbers to service names, and then inetd.conf tells inetd
what to do for a given service name.

First, put a line like this into /etc/services (after checking to make sure it isn’t already there):

cvspserver 2401/tcp

Then in /etc/inetd.conf, put this:

cvspserver stream tcp nowait root /usr/Tocal/bin/cvs cvs \
--allow-root=/usr/local/newrepos pserver

(In the actual file, this should be all one long line, with no backslash.) If your system uses
tcpwrappers, you might want to use something like this instead:

cvspserver stream tcp nowait root /usr/sbin/tcpd /usr/Tocal/bin/cvs \
--allow-root=/usr/local/newrepos pserver

Now, restart inetd so it notices the changes to its configuration files. (If you don’t know how
to restart the daemon, just reboot the machine—that will work, too.)

That'’s enough to permit connections, but you’ll also want to set up special CVS passwords—
separate from the users’ regular login passwords—so people can access the repository without
compromising overall system security.

100 Chapter 3

The CVS password file is CVSROOT/passwd in the repository. It was not created by default
when you ran cvs init, because CVS doesn’t know for sure that you'll be using pserver. Even
if the password file has been created, CVS has no way of knowing what usernames and
passwords to create. So, you have to create one yourself; here’s a sample CVSRoot/passwd

file:
kfogel:rKab5jzULzmhOo

mosheb:tGX1fS8sun6rY:pubcvs
anonymous:XR4EZcEsOszik

The format is as simple as it looks. Each line is:

<USERNAME> : <ENCRYPTED_PASSWORD>: <OPTIONAL_SYSTEM_USERNAME>

The extra colon followed by an optional system username tells CVS that connections au-
thenticated with USERNAME should run as the system account SYSTEM_USERNAME.
In other words, CVS session is able to do things in the repository that only someone logged

in as SYSTEM_USERNAME can do.

If no system username is given, USERNAME must match an actual login account name on
the system, and the session will run with that user’s permissions. In either case, the en-
crypted password should not be the same as the user’s actual login password. It should be an
independent password used only for CVS pserver connections.

The password is encrypted using the same algorithm as the standard Unix system passwords
stored in /etc/passwd. You might be wondering at this point how one acquires an encrypted
version of a password. For Unix system passwords, the passwd command takes care of the
encryption in /etc/passwd for you. Unfortunately, there is no corresponding cvs passwd
command (it has been proposed several times, but no one’s gotten around to writing it—
perhaps you'll do it?).

This is an inconvenience, but only a slight one. If nothing else, you can always temporarily
change a regular user’s system password using passwd, cut and paste the encrypted text from
[etc/passwd into CVSROOT /passwd, and then restore the old password.

On some systems, the encrypted passwords are found in /etc/shadow and are
readable only by root.

That scheme is workable but rather cumbersome. It would be much easier to have a com-
mand-line utility that takes a plain text password as its argument and outputs the encrypted
version. Here is such a tool, written in Perl:

#!/usr/bin/perl

CVS Repository Administration 101

srand (time());

my $randletter = "(int (rand (26)) + (int (rand (1) + .5) % 2 ? 65 : 97))";
my $salt = sprintf ("%c%c", eval $randletter, eval $randletter);

my $plaintext = shift;

my $crypttext = crypt ($plaintext, $salt);

print "${crypttext}\n";
A good location for the preceding is in /usr/local/bin/cryptout.pl:
yarkon$ 1s -1 /usr/local/bin/cryptout.pl

S PWXP-XP-X 1 root root 265 Jun 14 20:41 /usr/local/bin/cryptout.pl
yarkon$ cryptout.pl "some text"
SB3A79YDX5L4s

yarkon$

If we took the output of this example and used it to create the following entry in CVSROOT/
passwd

jrandom:sB3A79YDX5L4s:craig
then someone could connect to the repository with the following command:

remote$ cvs -d :pserver:jrandom@yarkon.red-bean.com:/usr/local/newrepos login

They could then type “some text” as their password and thereafter be able to execute CVS
commands with the same access privileges as the system user “craig.”

If someone attempts to authenticate with a username and password that don’t appear in
CVSROOT/passwd, CVS will check to see if that username and password are present in
[etc/passwd. If they are (and if the password matches, of course), CVS will grant access. It
behaves this way for the administrator’s convenience, so that separate CVSROOT /passwd
entries don’t have to be set up for regular system users. However, this behavior is also a
security hole, because it means that if one of those users does connect to the CVS server,
that user’s regular login password will have crossed over the network in cleartext, poten-
tially vulnerable to the eyes of password sniffers. A bit later, you learn how to turn off this
“fallback” behavior, so that CVS consults only its own passwd file. However, whether you
leave it on or off, you should probably force any CVS users who also have login accounts to
maintain different passwords for the two functions.

Although the passwd file authenticates for the whole repository, with a little extra work you
can still use it to grant project-specific access. Here’s one method. Suppose you want to
grant some remote developers access to project “foo,” and others access to project “bar,” and

102 Chapter 3

you don’t want developers from one project to have commit access to the other. You can
accomplish this by creating project-specific user accounts and groups on the system and
then mapping to those accounts in the CVSROOT /passwd file. Here’s the relevant excerpt
from /etc/passwd

cvs-fo0:*:600:600:Public CVS Account for Project Foo:/usr/local/cvs:/bin/false
cvs-bar:*:601:601:Public CVS Account for Project Bar:/usr/local/cvs:/bin/false

and from /etc/group

cvs-foo:*:600:cvs-foo
cvs-bar:*:601l:cvs-bar

and, finally, CVSROOT /passwd:

kcunderh:rKab5jzULzmhOo:cvs-foo
jmankoff:tGX1fS8sun6rY:cvs-foo
brebard:cAXVPNZN6uFH2:cvs-foo
xwang:qp51sf7nzRzfs:cvs-foo
dstone:JDNNF6HeX/yLw:cvs-bar
twp:gTUHEM8Khcb06:cvs-bar
ffranklin:cG6/6yXbS9BHI:cvs-bar
yyang:YoEqcCeCUglvQ:cvs-bar

Some of the CVS usernames map onto the system user account cvs-foo and some onto cvs-
bar. Because CVS runs under the user ID of the system account, you just have to make sure
that only the appropriate users and groups can write to the relevant parts of the repository.
If you just make sure that the user accounts are locked down pretty tight (no valid login
password, /bin/false as the shell), then this system is reasonably secure (but see information
later in this chapter about CVSROOT permissions!). Also, CVS does record changes and
log messages under the CVS username, not the system username, so you can still tell who is
responsible for a given change.

Anonymous Access Via the Password-Authenticating Server

So far, we’ve seen only how to use the password-authenticating server to grant normal full
access to the repository (although, admittedly, one can restrict that access through carefully
arranged Unix file permissions). Turning this into anonymous, read-only access is a simple
step: You just have to add a new file, or possibly two, in CVSROOT/. The files’ names are
“readers” and “writers"—the former containing a list of usernames for users who can only
read the repository, the latter for users who can read and write.

If you list a username in CVSROQOT/readers, that user will have only read access to all
projects in the repository. If you list a username in CVSROOT /writers, that user will have
write access, and every pserver user not listed in writers will have read-only access. (In other

CVS Repository Administration

words, if the writers file exists at all, it implies read-only access for all those not listed in it.)
If the same username is listed in both files, CVS resolves the conflict in the more conserva-
tive way: The user will have read-only access.

The format of the files is very simple: one user per line (don’t forget to put a newline after
the last user). Here is a sample readers file:

anonymous
splotnik
guest
jbrowse

Note that the files apply to CVS usernames, not system usernames. If you use user aliasing in
the CVSROOT /passwd file (putting a system username after a second colon), the leftmost
username is the one to list in a readers or writers file.

Formally, here’s how the server works in deciding whether to grant read-only or read-write
access. If a readers file exists and this user is listed in it, then she gets read-only access. If a
writers file exists and this user is not listed in it, then she also gets read-only access (this is
true even if a readers file exists but that person is not listed there). If that person is listed in
both, she gets read-only access. In all other cases, that person gets full read-write access.

Thus, a typical repository with anonymous CVS access has this (or something like it) in

CVSROOT /passwd

anonymous:XR4EZcEsOszik

this (or something like it) in /etc/passwd

anonymous:!:1729:105:Anonymous CVS User:/usr/local/newrepos:/bin/false
and this in CVSROOT /readers:

anonymous

And, of course, the aforementioned setup in /etc/services and /etc/inetd.conf. That’s all
there is to it!

Note that some older Unix systems don’t support usernames longer than eight characters.
One way to get around this is to call the user “anon” instead of “anonymous” in CVSROOT/
passwd and in the system files, because people often assume that anon is short for anony-
mous, anyway. However, it is probably better to put something like this into the CVSROOT/
passwd file

anonymous:XR4EZcEsOszik:cvsanon

103

104 Chapter 3

(and then, of course, use “cvsanon” in the system files). That way, you can publish a reposi-
tory address that uses “anonymous,” which is more or less standard now. People accessing
the repository with

cvs -d :pserver:anonymous@cvs.foobar.com:/usr/local/newrepos (etc...)

would actually run on the server as cvsanon (or whatever). However, they wouldn’t need to
know or care about how things are set up on the server side—they’d see only the published
address.

Repository Structure Explained in Detail

The new repository still has no projects in it. Let’s re-run the initial import from Chapter 2,
watching what happens to the repository. (For simplicity’s sake, all commands will assume
that the CVSROOT environment variable has been set to /usr/local/newrepos, so there’s
no need to specify the repository with -d on imports and checkouts.)

yarkon$ 1s /usr/local/newrepos

CVSROOT/

yarkon$ pwd

/home/jrandom/src/

yarkon$ 1s

myproj/

yarkon$ cd myproj

yarkon$ cvs import -m "initial import into CVS"™ myproj jrandom start
N myproj/README. txt

N myproj/hello.c

cvs import: Importing /usr/Tocal/newrepos/myproj/a-subdir

N myproj/a-subdir/whatever.c

cvs import: Importing /usr/local/newrepos/myproj/a-subdir/subsubdir
N myproj/a-subdir/subsubdir/fish.c

cvs import: Importing /usr/Tocal/newrepos/myproj/b-subdir

N myproj/b-subdir/random.c

No conflicts created by this import
yarkon$ 1s /usr/local/newrepos

CVSROOT/ myproj/
yarkon$ cd /usr/local/newrepos/myproj

yarkon$ 1s

README.txt,v a-subdir/ b-subdir/ hello.c,v
yarkon$ cd a-subdir

yarkon$ 1s

subsubdir/ whatever.c,v

yarkon$ cd ..

yarkon$

CVS Repository Administration

Before the import, the repository contained only its administrative area, CVSROOT. After
the import, a new directory—myproj—appeared. The files and subdirectories inside that
new directory look suspiciously like the project we imported, except that the files have the
suffix “,v.” These are RCS-format version control files (the “,v” stands for “version”), and
they are the backbone of the repository. Each RCS file stores the revision history of its
corresponding file in the project, including all branches and tags.

You do not need to know any of the RCS format to use CVS (although there is an excellent
write-up included with the source distribution in doc/RCSFILES). However, a basic under-
standing of the format can be of immense help in troubleshooting CVS problems, so we’ll
take a brief peek into one of the files, hello.c,v. Here are its contents:

head 1.1;

branch 1.1.1;

access ;

symbols start:1.1.1.1 jrandom:1.1.1;
locks ; strict;

comment @ * @;

1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches 1.1.1.1;

next;

1.1.1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches ;

next;

desc
@@

1.1

Tog

@Initial revision
@

text

@finclude <stdio.h>

void
main ()
{
printf ("Hello, world!\n");

—

105

106 Chapter 3

1.1.1.1

Tog

@initial import into CVS
@

text

@@

Whew! Most of that you can ignore; don’t worry about the relationship between 1.1 and
1.1.1.1, for example, or the implied 1.1.1 branch. They aren’t really significant from a user’s
or even an administrator’s point of view. What you should try to understand is the overall
format. At the top is a collection of header fields:

head 1.1;

branch 1.1.1;

access ;

symbols start:1.1.1.1 jrandom:1.1.1;
locks ; strict;

comment @ * @;

Farther down in the file are groups of meta-information about each revision (but still not
showing the contents of that revision), such as:

1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches 1.1.1.1;

next ;

And finally, the log message and text of an actual revision:

1.1

Tog

@Initial revision
@

text

@finclude <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
}
@
1.1.1.1

Tog

CVS Repository Administration

@initial import into CVS
@

text

@@

If you look closely, you'll see that the first revision’s contents are stored under the heading
1.1; however, the log message there is “Initial revision,” whereas the log message we actually
used at import time was “initial import into CVS,” which appears farther down, under
revision 1.1.1.1. You don’t need to worry about this discrepancy right now. This happens
because imports are a special circumstance: In order for repeated imports into the same
project to have a useful effect, import actually places the initial revision on both the main
trunk and on a special branch. (The reasons for this will become clearer when we look at
vendor branches in Chapter 4). For now, you can treat 1.1 and 1.1.1.1 as the same thing.

The file becomes even more revealing after we commit the first modification to hello.c:

yarkon$ cvs -Q co myproj
yarkon$ cd myproj
yarkon$ emacs hello.c
(make some changes to the file)

yarkon$ cvs ci -m "print goodbye too"
cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir
cvs commit: Examining b-subdir

Checking in hello.c;

/usr/local/newrepos/myproj/hello.c,v <-- hello.c
new revision: 1.2; previous revision: 1.1
done

If you look at hello.c,v in the repository now, you can see the effect of the commit:

head 1.2;
access;
symbols
start:1.1.1.1 jrandom:1.1.1;
locks; strict;
comment @ * @;

1.2
date 99.06.21.01.49.40; author jrandom; state Exp;
branches;

next 1.1;

107

108 Chapter 3

1.1
date 99.06.20.17.47.26; author jrandom; state Exp;
branches
1.1.1.1;
next ;

1.1.1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches;

next ;

desc
@@

1.2

Tog

@print goodbye too
@

text

@finclude <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("Goodbye, world!\n");

® -

1.1

Tog

@Initial revision
@

text

@d7 1

@

1.1.1.1

Tog

@initial import into CVS
@

text

@@

Now the full contents of revision 1.2 are stored in the file, and the text for revision 1.1 has
been replaced with the cryptic formula:

d7 1

CVS Repository Administration

The d7 1 is a diff notation meaning “starting at line 7, delete 1 line.” In other words, to
derive revision 1.1, delete line 7 from revision 1.2! Try working through it yourself. You’ll
see that it does indeed produce revision 1.1—it simply does away with the line we added to

the file.

This demonstrates the basic principle of RCS format: It stores only the differences between
revisions, thereby saving a lot of space compared with storing each revision in full. To go
backwards from the most recent revision to the previous one, it patches the later revision
using the stored diff. Of course, this means that the further back you go in the revision
history, the more patch operations must be performed. (For example, if the file is on revi-
sion 1.7 and CVS is asked to retrieve revision 1.4, it has to produce 1.6 by patching backwards
from 1.7, then 1.5 by patching 1.6, then 1.4 by patching 1.5.) Fortunately, old revisions are
also the ones least often retrieved, so the RCS system works out pretty well in practice: The
more recent the revision, the cheaper it is to obtain.

As for the header information at the top of the file, you don’t need to know what all of it
means. However, the effects of certain operations show up very clearly in the headers, and
a passing familiarity with them might prove useful.

When committing a new revision on the trunk, the “head” label is updated (note how it
became 1.2 in the preceding example, when the second revision to hello.c was committed).
By adding a file as binary or when tagging it, those operations are recorded in the headers as
well. As an example, we’ll add foo.jpg as a binary file and then tag it a couple of times:

yarkon$ cvs add -kb foo.jpg

cvs add: scheduling file 'foo.jpg' for addition

cvs add: use 'cvs commit' to add this file permanently
yarkon$ cvs -q commit -m "added a random image; ask jrandom@red-bean.com why"
RCS file: /usr/local/newrepos/myproj/foo.jpg,v

done

Checking in foo.jpg;
/usr/local/newrepos/myproj/foo.jpg,v <-- foo.jpg
initial revision: 1.1

done

yarkon$ cvs tag some_random_tag foo.jpg

T foo.jpg

yarkon$ cvs tag ANOTHER-TAG foo.jpg

T foo.jpg

yarkon$

Now examine the header section of foo.jpg,v in the repository:

head 1.1;
access;
symbols

109

110 Chapter 3

ANOTHER-TAG:1.1
some_random_tag:1.1;
locks; strict;
comment @ @;
expand @b@;

Notice the b in the expand line at the end—it’s due to our having used the -kb flag when
adding the file and means the file won’t experience any keyword or newline expansions,
which would normally occur during checkouts and updates if it were a regular text file. The
tags appear in the symbols section, one tag per line—both of them are attached to the first
revision, because that’s what was tagged both times. This also helps explain why tag names
can contain only letters, numbers, hyphens, and underscores. If the tag itself contained
colons or dots, the RCS file’s record of it might be ambiguous, because there would be no
way to find the textual boundary between the tag and the revision to which it is attached.

RCS Format Always Quotes @ Signs

The @ symbol is used as a field delimiter in RCS files, which means that if one appears in
the text of a file or in a log message, it must be quoted (otherwise, CVS would incorrectly
interpret it as marking the end of that field). It is quoted by doubling—that is, CVS always
interprets @@ as “literal @ sign,” never as “end of current field.” When we committed
foo.jpg, the log message was

"added a random image; ask jrandom@red-bean.com why"

which is stored in foo.jpg,v like this:

1.1

Tog

@added a random image; ask jrandom@@red-bean.com why
@

The @ sign in jrandom@@red-bean.com will be automatically unquoted whenever CVS
retrieves the log message:

yarkon$ cvs log foo.jpg
RCS file: /usr/local/newrepos/myproj/foo.jpg,v
Working file: foo.jpg
head: 1.1
branch:
locks: strict
access Tlist:
symbolic names:
ANOTHER-TAG: 1.1
some_random_tag: 1.1

CVS Repository Administration

keyword substitution: b

total revisions: 1; selected revisions: 1
description:

revision 1.1

date: 2001/06/21 02:56:18; author: jrandom; state: Exp;
added a random image; ask jrandom@red-bean.com why

yarkon$

The only