org.apache.spark.mllib.clustering
PowerIterationClustering
Companion object PowerIterationClustering
class PowerIterationClustering extends Serializable
Power Iteration Clustering (PIC), a scalable graph clustering algorithm developed by Lin and Cohen. From the abstract: PIC finds a very low-dimensional embedding of a dataset using truncated power iteration on a normalized pair-wise similarity matrix of the data.
- Annotations
 - @Since("1.3.0")
 - Source
 - PowerIterationClustering.scala
 - See also
 
- Alphabetic
 - By Inheritance
 
- PowerIterationClustering
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Instance Constructors
-    new PowerIterationClustering()
Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100, initMode: "random"}.
Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100, initMode: "random"}.
- Annotations
 - @Since("1.3.0")
 
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def run(similarities: JavaRDD[(Long, Long, Double)]): PowerIterationClusteringModel
A Java-friendly version of
PowerIterationClustering.run.A Java-friendly version of
PowerIterationClustering.run.- Annotations
 - @Since("1.3.0")
 
 -    def run(similarities: RDD[(Long, Long, Double)]): PowerIterationClusteringModel
Run the PIC algorithm.
Run the PIC algorithm.
- similarities
 an RDD of (i, j, sij) tuples representing the affinity matrix, which is the matrix A in the PIC paper. The similarity sij must be nonnegative. This is a symmetric matrix and hence sij = sji. For any (i, j) with nonzero similarity, there should be either (i, j, sij) or (j, i, sji) in the input. Tuples with i = j are ignored, because we assume sij = 0.0.
- returns
 a PowerIterationClusteringModel that contains the clustering result
- Annotations
 - @Since("1.3.0")
 
 -    def run(graph: Graph[Double, Double]): PowerIterationClusteringModel
Run the PIC algorithm on Graph.
Run the PIC algorithm on Graph.
- graph
 an affinity matrix represented as graph, which is the matrix A in the PIC paper. The similarity sij represented as the edge between vertices (i, j) must be nonnegative. This is a symmetric matrix and hence sij = sji. For any (i, j) with nonzero similarity, there should be either (i, j, sij) or (j, i, sji) in the input. Tuples with i = j are ignored, because we assume sij = 0.0.
- returns
 a PowerIterationClusteringModel that contains the clustering result
- Annotations
 - @Since("1.5.0")
 
 -    def setInitializationMode(mode: String): PowerIterationClustering.this.type
Set the initialization mode.
Set the initialization mode. This can be either "random" to use a random vector as vertex properties, or "degree" to use normalized sum similarities. Default: random.
- Annotations
 - @Since("1.3.0")
 
 -    def setK(k: Int): PowerIterationClustering.this.type
Set the number of clusters.
Set the number of clusters.
- Annotations
 - @Since("1.3.0")
 
 -    def setMaxIterations(maxIterations: Int): PowerIterationClustering.this.type
Set maximum number of iterations of the power iteration loop
Set maximum number of iterations of the power iteration loop
- Annotations
 - @Since("1.3.0")
 
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)