object MLUtils extends Logging
Helper methods to load, save and pre-process data used in MLLib.
- Annotations
 - @Since("0.8.0")
 - Source
 - MLUtils.scala
 
- Alphabetic
 - By Inheritance
 
- MLUtils
 - Logging
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Type Members
-   implicit  class LogStringContext extends AnyRef
- Definition Classes
 - Logging
 
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -    def appendBias(vector: Vector): Vector
Returns a new vector with
1.0(bias) appended to the input vector.Returns a new vector with
1.0(bias) appended to the input vector.- Annotations
 - @Since("1.0.0")
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -    def convertMatrixColumnsFromML(dataset: Dataset[_], cols: String*): DataFrame
Converts matrix columns in an input Dataset to the org.apache.spark.mllib.linalg.Matrix type from the new org.apache.spark.ml.linalg.Matrix type under the
spark.mlpackage.Converts matrix columns in an input Dataset to the org.apache.spark.mllib.linalg.Matrix type from the new org.apache.spark.ml.linalg.Matrix type under the
spark.mlpackage.- dataset
 input dataset
- cols
 a list of matrix columns to be converted. Old matrix columns will be ignored. If unspecified, all new matrix columns will be converted except nested ones.
- returns
 the input
DataFramewith new matrix columns converted to the old matrix type
- Annotations
 - @Since("2.0.0") @varargs()
 
 -    def convertMatrixColumnsToML(dataset: Dataset[_], cols: String*): DataFrame
Converts Matrix columns in an input Dataset from the org.apache.spark.mllib.linalg.Matrix type to the new org.apache.spark.ml.linalg.Matrix type under the
spark.mlpackage.Converts Matrix columns in an input Dataset from the org.apache.spark.mllib.linalg.Matrix type to the new org.apache.spark.ml.linalg.Matrix type under the
spark.mlpackage.- dataset
 input dataset
- cols
 a list of matrix columns to be converted. New matrix columns will be ignored. If unspecified, all old matrix columns will be converted except nested ones.
- returns
 the input
DataFramewith old matrix columns converted to the new matrix type
- Annotations
 - @Since("2.0.0") @varargs()
 
 -    def convertVectorColumnsFromML(dataset: Dataset[_], cols: String*): DataFrame
Converts vector columns in an input Dataset to the org.apache.spark.mllib.linalg.Vector type from the new org.apache.spark.ml.linalg.Vector type under the
spark.mlpackage.Converts vector columns in an input Dataset to the org.apache.spark.mllib.linalg.Vector type from the new org.apache.spark.ml.linalg.Vector type under the
spark.mlpackage.- dataset
 input dataset
- cols
 a list of vector columns to be converted. Old vector columns will be ignored. If unspecified, all new vector columns will be converted except nested ones.
- returns
 the input
DataFramewith new vector columns converted to the old vector type
- Annotations
 - @Since("2.0.0") @varargs()
 
 -    def convertVectorColumnsToML(dataset: Dataset[_], cols: String*): DataFrame
Converts vector columns in an input Dataset from the org.apache.spark.mllib.linalg.Vector type to the new org.apache.spark.ml.linalg.Vector type under the
spark.mlpackage.Converts vector columns in an input Dataset from the org.apache.spark.mllib.linalg.Vector type to the new org.apache.spark.ml.linalg.Vector type under the
spark.mlpackage.- dataset
 input dataset
- cols
 a list of vector columns to be converted. New vector columns will be ignored. If unspecified, all old vector columns will be converted except nested ones.
- returns
 the input
DataFramewith old vector columns converted to the new vector type
- Annotations
 - @Since("2.0.0") @varargs()
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -    def isTraceEnabled(): Boolean
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def kFold(df: DataFrame, numFolds: Int, foldColName: String): Array[(RDD[Row], RDD[Row])]
Version of
kFold()taking a fold column name.Version of
kFold()taking a fold column name.- Annotations
 - @Since("3.1.0")
 
 -    def kFold[T](rdd: RDD[T], numFolds: Int, seed: Long)(implicit arg0: ClassTag[T]): Array[(RDD[T], RDD[T])]
Version of
kFold()taking a Long seed.Version of
kFold()taking a Long seed.- Annotations
 - @Since("2.0.0")
 
 -    def kFold[T](rdd: RDD[T], numFolds: Int, seed: Int)(implicit arg0: ClassTag[T]): Array[(RDD[T], RDD[T])]
Return a k element array of pairs of RDDs with the first element of each pair containing the training data, a complement of the validation data and the second element, the validation data, containing a unique 1/kth of the data.
Return a k element array of pairs of RDDs with the first element of each pair containing the training data, a complement of the validation data and the second element, the validation data, containing a unique 1/kth of the data. Where k=numFolds.
- Annotations
 - @Since("1.0.0")
 
 -    def loadLabeledPoints(sc: SparkContext, dir: String): RDD[LabeledPoint]
Loads labeled points saved using
RDD[LabeledPoint].saveAsTextFilewith the default number of partitions.Loads labeled points saved using
RDD[LabeledPoint].saveAsTextFilewith the default number of partitions.- Annotations
 - @Since("1.1.0")
 
 -    def loadLabeledPoints(sc: SparkContext, path: String, minPartitions: Int): RDD[LabeledPoint]
Loads labeled points saved using
RDD[LabeledPoint].saveAsTextFile.Loads labeled points saved using
RDD[LabeledPoint].saveAsTextFile.- sc
 Spark context
- path
 file or directory path in any Hadoop-supported file system URI
- minPartitions
 min number of partitions
- returns
 labeled points stored as an RDD[LabeledPoint]
- Annotations
 - @Since("1.1.0")
 
 -    def loadLibSVMFile(sc: SparkContext, path: String): RDD[LabeledPoint]
Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], with number of features determined automatically and the default number of partitions.
Loads binary labeled data in the LIBSVM format into an RDD[LabeledPoint], with number of features determined automatically and the default number of partitions.
- Annotations
 - @Since("1.0.0")
 
 -    def loadLibSVMFile(sc: SparkContext, path: String, numFeatures: Int): RDD[LabeledPoint]
Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], with the default number of partitions.
Loads labeled data in the LIBSVM format into an RDD[LabeledPoint], with the default number of partitions.
- Annotations
 - @Since("1.0.0")
 
 -    def loadLibSVMFile(sc: SparkContext, path: String, numFeatures: Int, minPartitions: Int): RDD[LabeledPoint]
Loads labeled data in the LIBSVM format into an RDD[LabeledPoint].
Loads labeled data in the LIBSVM format into an RDD[LabeledPoint]. The LIBSVM format is a text-based format used by LIBSVM and LIBLINEAR. Each line represents a labeled sparse feature vector using the following format:
label index1:value1 index2:value2 ...
where the indices are one-based and in ascending order. This method parses each line into a org.apache.spark.mllib.regression.LabeledPoint, where the feature indices are converted to zero-based.
- sc
 Spark context
- path
 file or directory path in any Hadoop-supported file system URI
- numFeatures
 number of features, which will be determined from the input data if a nonpositive value is given. This is useful when the dataset is already split into multiple files and you want to load them separately, because some features may not present in certain files, which leads to inconsistent feature dimensions.
- minPartitions
 min number of partitions
- returns
 labeled data stored as an RDD[LabeledPoint]
- Annotations
 - @Since("1.0.0")
 
 -    def loadVectors(sc: SparkContext, path: String): RDD[Vector]
Loads vectors saved using
RDD[Vector].saveAsTextFilewith the default number of partitions.Loads vectors saved using
RDD[Vector].saveAsTextFilewith the default number of partitions.- Annotations
 - @Since("1.1.0")
 
 -    def loadVectors(sc: SparkContext, path: String, minPartitions: Int): RDD[Vector]
Loads vectors saved using
RDD[Vector].saveAsTextFile.Loads vectors saved using
RDD[Vector].saveAsTextFile.- sc
 Spark context
- path
 file or directory path in any Hadoop-supported file system URI
- minPartitions
 min number of partitions
- returns
 vectors stored as an RDD[Vector]
- Annotations
 - @Since("1.1.0")
 
 -    def log: Logger
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logName: String
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -  def optimizerFailed(instr: Instrumentation, optimizerClass: Class[_]): Unit
 -    def saveAsLibSVMFile(data: RDD[LabeledPoint], dir: String): Unit
Save labeled data in LIBSVM format.
Save labeled data in LIBSVM format.
- data
 an RDD of LabeledPoint to be saved
- dir
 directory to save the data
- Annotations
 - @Since("1.0.0")
 - See also
 org.apache.spark.mllib.util.MLUtils.loadLibSVMFile
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -    def withLogContext(context: HashMap[String, String])(body: => Unit): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)