public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>> extends Estimator<M>
Constructor and Description |
---|
Predictor() |
Modifier and Type | Method and Description |
---|---|
abstract Learner |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
protected RDD<LabeledPoint> |
extractLabeledPoints(DataFrame dataset)
Extract
labelCol and featuresCol from the given dataset,
and put it in an RDD with strong types. |
Param<java.lang.String> |
featuresCol()
Param for features column name.
|
M |
fit(DataFrame dataset)
Fits a model to the input data.
|
java.lang.String |
getFeaturesCol() |
java.lang.String |
getLabelCol() |
java.lang.String |
getPredictionCol() |
Param<java.lang.String> |
labelCol()
Param for label column name.
|
Param<java.lang.String> |
predictionCol()
Param for prediction column name.
|
Learner |
setFeaturesCol(java.lang.String value) |
Learner |
setLabelCol(java.lang.String value) |
Learner |
setPredictionCol(java.lang.String value) |
protected abstract M |
train(DataFrame dataset)
Train a model using the given dataset and parameters.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
transformSchema
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString, uid
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public Learner setLabelCol(java.lang.String value)
public Learner setFeaturesCol(java.lang.String value)
public Learner setPredictionCol(java.lang.String value)
public M fit(DataFrame dataset)
Estimator
fit
in class Estimator<M extends PredictionModel<FeaturesType,M>>
dataset
- (undocumented)public abstract Learner copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Estimator<M extends PredictionModel<FeaturesType,M>>
extra
- (undocumented)defaultCopy()
protected abstract M train(DataFrame dataset)
fit()
to avoid dealing with schema validation
and copying parameters into the model.
dataset
- Training datasetpublic StructType transformSchema(StructType schema)
PipelineStage
Derives the output schema from the input schema.
transformSchema
in class PipelineStage
schema
- (undocumented)protected RDD<LabeledPoint> extractLabeledPoints(DataFrame dataset)
labelCol
and featuresCol
from the given dataset,
and put it in an RDD with strong types.dataset
- (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.public Param<java.lang.String> labelCol()
public java.lang.String getLabelCol()
public Param<java.lang.String> featuresCol()
public java.lang.String getFeaturesCol()
public Param<java.lang.String> predictionCol()
public java.lang.String getPredictionCol()