public abstract class ClassificationModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>> extends PredictionModel<FeaturesType,M>
Model produced by a Classifier.
Classes are indexed {0, 1, ..., numClasses - 1}.
| Constructor and Description |
|---|
ClassificationModel() |
| Modifier and Type | Method and Description |
|---|---|
Param<java.lang.String> |
featuresCol()
Param for features column name.
|
java.lang.String |
getFeaturesCol() |
java.lang.String |
getLabelCol() |
java.lang.String |
getPredictionCol() |
java.lang.String |
getRawPredictionCol() |
Param<java.lang.String> |
labelCol()
Param for label column name.
|
abstract int |
numClasses()
Number of classes (values which the label can take).
|
protected double |
predict(FeaturesType features)
Predict label for the given features.
|
Param<java.lang.String> |
predictionCol()
Param for prediction column name.
|
protected abstract Vector |
predictRaw(FeaturesType features)
Raw prediction for each possible label.
|
protected double |
raw2prediction(Vector rawPrediction)
Given a vector of raw predictions, select the predicted label.
|
Param<java.lang.String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
M |
setRawPredictionCol(java.lang.String value) |
DataFrame |
transform(DataFrame dataset)
Transforms dataset by reading from
featuresCol, and appending new columns as specified by
parameters:
- predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector. |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
featuresDataType, numFeatures, setFeaturesCol, setPredictionCol, transformImpl, transformSchematransform, transform, transformtransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoString, uidinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic M setRawPredictionCol(java.lang.String value)
public abstract int numClasses()
public DataFrame transform(DataFrame dataset)
featuresCol, and appending new columns as specified by
parameters:
- predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector.
transform in class PredictionModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>>dataset - input datasetprotected double predict(FeaturesType features)
transform() and output predictionCol.
This default implementation for classification predicts the index of the maximum value
from predictRaw().
predict in class PredictionModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>>features - (undocumented)protected abstract Vector predictRaw(FeaturesType features)
transform() and output rawPredictionCol.
features - (undocumented)protected double raw2prediction(Vector rawPrediction)
rawPrediction - (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public Param<java.lang.String> rawPredictionCol()
public java.lang.String getRawPredictionCol()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.public Param<java.lang.String> labelCol()
public java.lang.String getLabelCol()
public Param<java.lang.String> featuresCol()
public java.lang.String getFeaturesCol()
public Param<java.lang.String> predictionCol()
public java.lang.String getPredictionCol()