public class Pipeline extends Estimator<PipelineModel> implements MLWritable
Estimator
or a Transformer
. When fit(org.apache.spark.sql.Dataset<?>)
is called, the
stages are executed in order. If a stage is an Estimator
, its Estimator.fit(org.apache.spark.sql.Dataset<?>, org.apache.spark.ml.param.ParamPair<?>, org.apache.spark.ml.param.ParamPair<?>...)
method will
be called on the input dataset to fit a model. Then the model, which is a transformer, will be
used to transform the dataset as the input to the next stage. If a stage is a Transformer
,
its Transformer.transform(org.apache.spark.sql.Dataset<?>, org.apache.spark.ml.param.ParamPair<?>, org.apache.spark.ml.param.ParamPair<?>...)
method will be called to produce the dataset for the next stage.
The fitted model from a Pipeline
is an PipelineModel
, which consists of fitted models and
transformers, corresponding to the pipeline stages. If there are no stages, the pipeline acts as
an identity transformer.Modifier and Type | Class and Description |
---|---|
static class |
Pipeline.SharedReadWrite$
|
Constructor and Description |
---|
Pipeline() |
Pipeline(java.lang.String uid) |
Modifier and Type | Method and Description |
---|---|
protected static <T> T |
$(Param<T> param) |
static Params |
clear(Param<?> param) |
Pipeline |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
protected static <T extends Params> |
copyValues(T to,
ParamMap extra) |
protected static <T extends Params> |
copyValues$default$2() |
protected static <T extends Params> |
defaultCopy(ParamMap extra) |
static java.lang.String |
explainParam(Param<?> param) |
static java.lang.String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
PipelineModel |
fit(Dataset<?> dataset)
Fits the pipeline to the input dataset with additional parameters.
|
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static <T> T |
getOrDefault(Param<T> param) |
static Param<java.lang.Object> |
getParam(java.lang.String paramName) |
PipelineStage[] |
getStages() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(java.lang.String paramName) |
protected static void |
initializeLogIfNecessary(boolean isInterpreter) |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
protected static boolean |
isTraceEnabled() |
static Pipeline |
load(java.lang.String path) |
protected static org.slf4j.Logger |
log() |
protected static void |
logDebug(scala.Function0<java.lang.String> msg) |
protected static void |
logDebug(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static void |
logError(scala.Function0<java.lang.String> msg) |
protected static void |
logError(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static void |
logInfo(scala.Function0<java.lang.String> msg) |
protected static void |
logInfo(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static java.lang.String |
logName() |
protected static void |
logTrace(scala.Function0<java.lang.String> msg) |
protected static void |
logTrace(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static void |
logWarning(scala.Function0<java.lang.String> msg) |
protected static void |
logWarning(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
static Param<?>[] |
params() |
static MLReader<Pipeline> |
read() |
static void |
save(java.lang.String path) |
static <T> Params |
set(Param<T> param,
T value) |
protected static Params |
set(ParamPair<?> paramPair) |
protected static Params |
set(java.lang.String param,
java.lang.Object value) |
protected static <T> Params |
setDefault(Param<T> param,
T value) |
protected static Params |
setDefault(scala.collection.Seq<ParamPair<?>> paramPairs) |
Pipeline |
setStages(PipelineStage[] value) |
Param<PipelineStage[]> |
stages()
param for pipeline stages
|
static java.lang.String |
toString() |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
static void |
validateParams() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transformSchema
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
save
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString
public static Pipeline load(java.lang.String path)
public static java.lang.String toString()
public static Param<?>[] params()
public static void validateParams()
public static java.lang.String explainParam(Param<?> param)
public static java.lang.String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(java.lang.String paramName)
public static Param<java.lang.Object> getParam(java.lang.String paramName)
protected static final Params set(java.lang.String param, java.lang.Object value)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
protected static final <T> T $(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
protected static java.lang.String logName()
protected static org.slf4j.Logger log()
protected static void logInfo(scala.Function0<java.lang.String> msg)
protected static void logDebug(scala.Function0<java.lang.String> msg)
protected static void logTrace(scala.Function0<java.lang.String> msg)
protected static void logWarning(scala.Function0<java.lang.String> msg)
protected static void logError(scala.Function0<java.lang.String> msg)
protected static void logInfo(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logDebug(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logTrace(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logWarning(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logError(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static boolean isTraceEnabled()
protected static void initializeLogIfNecessary(boolean isInterpreter)
public static void save(java.lang.String path) throws java.io.IOException
java.io.IOException
public java.lang.String uid()
Identifiable
uid
in interface Identifiable
public Param<PipelineStage[]> stages()
public Pipeline setStages(PipelineStage[] value)
public PipelineStage[] getStages()
public PipelineModel fit(Dataset<?> dataset)
Estimator
, its Estimator.fit(org.apache.spark.sql.Dataset<?>, org.apache.spark.ml.param.ParamPair<?>, org.apache.spark.ml.param.ParamPair<?>...)
method will be called on the input dataset to fit a model.
Then the model, which is a transformer, will be used to transform the dataset as the input to
the next stage. If a stage is a Transformer
, its Transformer.transform(org.apache.spark.sql.Dataset<?>, org.apache.spark.ml.param.ParamPair<?>, org.apache.spark.ml.param.ParamPair<?>...)
method will be
called to produce the dataset for the next stage. The fitted model from a Pipeline
is an
PipelineModel
, which consists of fitted models and transformers, corresponding to the
pipeline stages. If there are no stages, the output model acts as an identity transformer.
fit
in class Estimator<PipelineModel>
dataset
- input datasetpublic Pipeline copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Estimator<PipelineModel>
extra
- (undocumented)defaultCopy()
public StructType transformSchema(StructType schema)
PipelineStage
Derives the output schema from the input schema.
transformSchema
in class PipelineStage
schema
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable