public abstract class PredictionModel<FeaturesType,M extends PredictionModel<FeaturesType,M>> extends Model<M>
Constructor and Description |
---|
PredictionModel() |
Modifier and Type | Method and Description |
---|---|
Param<String> |
featuresCol()
Param for features column name.
|
String |
getFeaturesCol() |
String |
getLabelCol() |
String |
getPredictionCol() |
Param<String> |
labelCol()
Param for label column name.
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
Param<String> |
predictionCol()
Param for prediction column name.
|
M |
setFeaturesCol(String value) |
M |
setPredictionCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms dataset by reading from
featuresCol , calling predict , and storing
the predictions as a new column predictionCol . |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString, uid
public M setFeaturesCol(String value)
public M setPredictionCol(String value)
public int numFeatures()
public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
featuresCol
, calling predict
, and storing
the predictions as a new column predictionCol
.
transform
in class Transformer
dataset
- input datasetpredictionCol
of type Double
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.public Param<String> labelCol()
public String getLabelCol()
public Param<String> featuresCol()
public String getFeaturesCol()
public Param<String> predictionCol()
public String getPredictionCol()