public class KMeansModel extends Model<KMeansModel> implements MLWritable
param: parentModel a model trained by spark.mllib.clustering.KMeans.
Modifier and Type | Method and Description |
---|---|
static Params |
clear(Param<?> param) |
Vector[] |
clusterCenters() |
double |
computeCost(Dataset<?> dataset)
Return the K-means cost (sum of squared distances of points to their nearest center) for this
model on the given data.
|
KMeansModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
static String |
getInitMode() |
String |
getInitMode() |
static int |
getInitSteps() |
int |
getInitSteps() |
static int |
getK() |
int |
getK() |
static int |
getMaxIter() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static long |
getSeed() |
static double |
getTol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
boolean |
hasSummary()
Return true if there exists summary of model.
|
static Param<String> |
initMode() |
Param<String> |
initMode()
Param for the initialization algorithm.
|
static IntParam |
initSteps() |
IntParam |
initSteps()
Param for the number of steps for the k-means|| initialization mode.
|
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static IntParam |
k() |
IntParam |
k()
The number of clusters to create (k).
|
static KMeansModel |
load(String path) |
static IntParam |
maxIter() |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<String> |
predictionCol() |
static MLReader<KMeansModel> |
read() |
static void |
save(String path) |
static LongParam |
seed() |
static <T> Params |
set(Param<T> param,
T value) |
KMeansModel |
setFeaturesCol(String value) |
static M |
setParent(Estimator<M> parent) |
KMeansModel |
setPredictionCol(String value) |
KMeansSummary |
summary()
Gets summary of model on training set.
|
static DoubleParam |
tol() |
static String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
MLWriter |
write()
Returns a
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
public static MLReader<KMeansModel> read()
public static KMeansModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final IntParam maxIter()
public static final int getMaxIter()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final LongParam seed()
public static final long getSeed()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static final DoubleParam tol()
public static final double getTol()
public static final IntParam k()
public static int getK()
public static final Param<String> initMode()
public static String getInitMode()
public static final IntParam initSteps()
public static int getInitSteps()
public static void save(String path) throws java.io.IOException
java.io.IOException
public String uid()
Identifiable
uid
in interface Identifiable
public KMeansModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<KMeansModel>
extra
- (undocumented)public KMeansModel setFeaturesCol(String value)
public KMeansModel setPredictionCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Vector[] clusterCenters()
public double computeCost(Dataset<?> dataset)
dataset
- (undocumented)public MLWriter write()
MLWriter
instance for this ML instance.
For KMeansModel
, this does NOT currently save the training summary
.
An option to save summary
may be added in the future.
write
in interface MLWritable
public boolean hasSummary()
public KMeansSummary summary()
trainingSummary == None
.public IntParam k()
public int getK()
public Param<String> initMode()
public String getInitMode()
public IntParam initSteps()
public int getInitSteps()
public StructType validateAndTransformSchema(StructType schema)
schema
- input schema