public class Interaction extends Transformer implements HasInputCols, HasOutputCol, DefaultParamsWritable
For example, given the input feature values Double(2)
and Vector(3, 4)
, the output would be
Vector(6, 8)
if all input features were numeric. If the first feature was instead nominal
with four categories, the output would then be Vector(0, 0, 0, 0, 3, 4, 0, 0)
.
Constructor and Description |
---|
Interaction() |
Interaction(String uid) |
Modifier and Type | Method and Description |
---|---|
Interaction |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static Interaction |
load(String path) |
static MLReader<T> |
read() |
Interaction |
setInputCols(String[] values) |
Interaction |
setOutputCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getInputCols, inputCols
getOutputCol, outputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static Interaction load(String path)
public static MLReader<T> read()
public String uid()
Identifiable
uid
in interface Identifiable
public Interaction setInputCols(String[] values)
public Interaction setOutputCol(String value)
public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public Interaction copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Transformer
extra
- (undocumented)