public class GaussianMixtureModel extends Model<GaussianMixtureModel> implements GaussianMixtureParams, MLWritable, HasTrainingSummary<GaussianMixtureSummary>
param: weights Weight for each Gaussian distribution in the mixture.
This is a multinomial probability distribution over the k Gaussians,
where weights(i) is the weight for Gaussian i, and weights sum to 1.
param: gaussians Array of MultivariateGaussian
where gaussians(i) represents
the Multivariate Gaussian (Normal) Distribution for Gaussian i
Modifier and Type | Method and Description |
---|---|
GaussianMixtureModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
MultivariateGaussian[] |
gaussians() |
Dataset<Row> |
gaussiansDF()
Retrieve Gaussian distributions as a DataFrame.
|
IntParam |
k()
Number of independent Gaussians in the mixture model.
|
static GaussianMixtureModel |
load(String path) |
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
int |
predict(Vector features) |
Param<String> |
predictionCol()
Param for prediction column name.
|
Vector |
predictProbability(Vector features) |
Param<String> |
probabilityCol()
Param for Column name for predicted class conditional probabilities.
|
static MLReader<GaussianMixtureModel> |
read() |
LongParam |
seed()
Param for random seed.
|
GaussianMixtureModel |
setFeaturesCol(String value) |
GaussianMixtureModel |
setPredictionCol(String value) |
GaussianMixtureModel |
setProbabilityCol(String value) |
GaussianMixtureSummary |
summary()
Gets summary of model on training set.
|
DoubleParam |
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).
|
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
double[] |
weights() |
MLWriter |
write()
Returns a
MLWriter instance for this ML instance. |
transform, transform, transform
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getK, validateAndTransformSchema
getMaxIter
getFeaturesCol
getPredictionCol
getProbabilityCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
hasSummary, setSummary
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<GaussianMixtureModel> read()
public static GaussianMixtureModel load(String path)
public final IntParam k()
GaussianMixtureParams
k
in interface GaussianMixtureParams
public final DoubleParam tol()
HasTol
public final Param<String> probabilityCol()
HasProbabilityCol
probabilityCol
in interface HasProbabilityCol
public final Param<String> predictionCol()
HasPredictionCol
predictionCol
in interface HasPredictionCol
public final LongParam seed()
HasSeed
public final Param<String> featuresCol()
HasFeaturesCol
featuresCol
in interface HasFeaturesCol
public final IntParam maxIter()
HasMaxIter
maxIter
in interface HasMaxIter
public String uid()
Identifiable
uid
in interface Identifiable
public double[] weights()
public MultivariateGaussian[] gaussians()
public GaussianMixtureModel setFeaturesCol(String value)
public GaussianMixtureModel setPredictionCol(String value)
public GaussianMixtureModel setProbabilityCol(String value)
public GaussianMixtureModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<GaussianMixtureModel>
extra
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public int predict(Vector features)
public Dataset<Row> gaussiansDF()
root
|-- mean: vector (nullable = true)
|-- cov: matrix (nullable = true)
public MLWriter write()
MLWriter
instance for this ML instance.
For GaussianMixtureModel
, this does NOT currently save the training summary
.
An option to save summary
may be added in the future.
write
in interface MLWritable
public GaussianMixtureSummary summary()
hasSummary
is false.summary
in interface HasTrainingSummary<GaussianMixtureSummary>