org.apache.spark.mllib.classification
Class NaiveBayesModel

Object
  extended by org.apache.spark.mllib.classification.NaiveBayesModel
All Implemented Interfaces:
java.io.Serializable, ClassificationModel, Saveable

public class NaiveBayesModel
extends Object
implements ClassificationModel, scala.Serializable, Saveable

Model for Naive Bayes Classifiers.

param: labels list of labels param: pi log of class priors, whose dimension is C, number of labels param: theta log of class conditional probabilities, whose dimension is C-by-D, where D is number of features param: modelType The type of NB model to fit can be "multinomial" or "bernoulli"

See Also:
Serialized Form

Method Summary
 double[] labels()
           
static NaiveBayesModel load(SparkContext sc, String path)
           
 String modelType()
           
 double[] pi()
           
 RDD<Object> predict(RDD<Vector> testData)
          Predict values for the given data set using the model trained.
 double predict(Vector testData)
          Predict values for a single data point using the model trained.
 void save(SparkContext sc, String path)
          Save this model to the given path.
 double[][] theta()
           
 
Methods inherited from class Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface org.apache.spark.mllib.classification.ClassificationModel
predict
 

Method Detail

load

public static NaiveBayesModel load(SparkContext sc,
                                   String path)

labels

public double[] labels()

pi

public double[] pi()

theta

public double[][] theta()

modelType

public String modelType()

predict

public RDD<Object> predict(RDD<Vector> testData)
Description copied from interface: ClassificationModel
Predict values for the given data set using the model trained.

Specified by:
predict in interface ClassificationModel
Parameters:
testData - RDD representing data points to be predicted
Returns:
an RDD[Double] where each entry contains the corresponding prediction

predict

public double predict(Vector testData)
Description copied from interface: ClassificationModel
Predict values for a single data point using the model trained.

Specified by:
predict in interface ClassificationModel
Parameters:
testData - array representing a single data point
Returns:
predicted category from the trained model

save

public void save(SparkContext sc,
                 String path)
Description copied from interface: Saveable
Save this model to the given path.

This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/

The model may be loaded using Loader.load.

Specified by:
save in interface Saveable
Parameters:
sc - Spark context used to save model data.
path - Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.