|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Object org.apache.spark.mllib.regression.StreamingLinearAlgorithm<LogisticRegressionModel,LogisticRegressionWithSGD> org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD
public class StreamingLogisticRegressionWithSGD
:: Experimental ::
Train or predict a logistic regression model on streaming data. Training uses
Stochastic Gradient Descent to update the model based on each new batch of
incoming data from a DStream (see LogisticRegressionWithSGD
for model equation)
Each batch of data is assumed to be an RDD of LabeledPoints. The number of data points per batch can vary, but the number of features must be constant. An initial weight vector must be provided.
Use a builder pattern to construct a streaming logistic regression analysis in an application, like:
val model = new StreamingLogisticRegressionWithSGD()
.setStepSize(0.5)
.setNumIterations(10)
.setInitialWeights(Vectors.dense(...))
.trainOn(DStream)
Constructor Summary | |
---|---|
StreamingLogisticRegressionWithSGD()
Construct a StreamingLogisticRegression object with default parameters: {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}. |
Method Summary | |
---|---|
StreamingLogisticRegressionWithSGD |
setInitialWeights(Vector initialWeights)
Set the initial weights. |
StreamingLogisticRegressionWithSGD |
setMiniBatchFraction(double miniBatchFraction)
Set the fraction of each batch to use for updates. |
StreamingLogisticRegressionWithSGD |
setNumIterations(int numIterations)
Set the number of iterations of gradient descent to run per update. |
StreamingLogisticRegressionWithSGD |
setRegParam(double regParam)
Set the regularization parameter. |
StreamingLogisticRegressionWithSGD |
setStepSize(double stepSize)
Set the step size for gradient descent. |
Methods inherited from class org.apache.spark.mllib.regression.StreamingLinearAlgorithm |
---|
latestModel, predictOn, predictOn, predictOnValues, predictOnValues, trainOn, trainOn |
Methods inherited from class Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface org.apache.spark.Logging |
---|
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning |
Constructor Detail |
---|
public StreamingLogisticRegressionWithSGD()
StreamingLinearAlgorithm
)
Method Detail |
---|
public StreamingLogisticRegressionWithSGD setStepSize(double stepSize)
public StreamingLogisticRegressionWithSGD setNumIterations(int numIterations)
public StreamingLogisticRegressionWithSGD setMiniBatchFraction(double miniBatchFraction)
public StreamingLogisticRegressionWithSGD setRegParam(double regParam)
public StreamingLogisticRegressionWithSGD setInitialWeights(Vector initialWeights)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |